Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(arcsin(3/5)+pi/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(arcsin(53​)+6π​)

Solution

3948+253​​
+1
Decimal
2.34105…
Solution steps
tan(arcsin(53​)+6π​)
Rewrite using trig identities:1−tan(arcsin(53​))tan(6π​)tan(arcsin(53​))+tan(6π​)​
tan(arcsin(53​)+6π​)
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(arcsin(53​))tan(6π​)tan(arcsin(53​))+tan(6π​)​
=1−tan(arcsin(53​))tan(6π​)tan(arcsin(53​))+tan(6π​)​
Rewrite using trig identities:tan(arcsin(53​))=43​
tan(arcsin(53​))
Rewrite using trig identities:tan(arcsin(53​))=1−(53​)2(53​)1−(53​)2​​
Use the following identity: tan(arcsin(x))=1−x2x1−x2​​
=1−(53​)2(53​)1−(53​)2​​
=1−(53​)253​1−(53​)2​​
Simplify=43​
Use the following trivial identity:tan(6π​)=33​​
tan(6π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1−43​⋅33​​43​+33​​​
Simplify 1−43​⋅33​​43​+33​​​:3948+253​​
1−43​⋅33​​43​+33​​​
Multiply 43​⋅33​​:43​​
43​⋅33​​
Cross-cancel: 3=43​​
=1−43​​43​+33​​​
Join 43​+33​​:129+43​​
43​+33​​
Least Common Multiplier of 4,3:12
4,3
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 4 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 43​:multiply the denominator and numerator by 343​=4⋅33⋅3​=129​
For 33​​:multiply the denominator and numerator by 433​​=3⋅43​⋅4​=123​⋅4​
=129​+123​⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=129+3​⋅4​
=1−43​​129+43​​​
Apply the fraction rule: acb​​=c⋅ab​=12(1−43​​)9+3​⋅4​
Join 1−43​​:44−3​​
1−43​​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​​
Multiply the numbers: 1⋅4=4=44−3​​
=12⋅44−3​​9+43​​
Multiply 12⋅44−3​​:3(4−3​)
12⋅44−3​​
Multiply fractions: a⋅cb​=ca⋅b​=4(4−3​)⋅12​
Divide the numbers: 412​=3=3(4−3​)
=3(4−3​)9+43​​
Rationalize 3(4−3​)9+43​​:3948+253​​
3(4−3​)9+43​​
Multiply by the conjugate 4+3​4+3​​=3(4−3​)(4+3​)(9+3​⋅4)(4+3​)​
(9+3​⋅4)(4+3​)=48+253​
(9+3​⋅4)(4+3​)
=(9+43​)(4+3​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=9,b=3​⋅4,c=4,d=3​=9⋅4+93​+3​⋅4⋅4+3​⋅43​
=9⋅4+93​+4⋅43​+43​3​
Simplify 9⋅4+93​+4⋅43​+43​3​:48+253​
9⋅4+93​+4⋅43​+43​3​
9⋅4=36
9⋅4
Multiply the numbers: 9⋅4=36=36
4⋅43​=163​
4⋅43​
Multiply the numbers: 4⋅4=16=163​
43​3​=12
43​3​
Apply radical rule: a​a​=a3​3​=3=4⋅3
Multiply the numbers: 4⋅3=12=12
=36+93​+163​+12
Add similar elements: 93​+163​=253​=36+253​+12
Add the numbers: 36+12=48=48+253​
=48+253​
3(4−3​)(4+3​)=39
3(4−3​)(4+3​)
Expand (4−3​)(4+3​):13
(4−3​)(4+3​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=4,b=3​=42−(3​)2
Simplify 42−(3​)2:13
42−(3​)2
42=16
42
42=16=16
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=16−3
Subtract the numbers: 16−3=13=13
=13
=3⋅13
Expand 3⋅13:39
3⋅13
Distribute parentheses=3⋅13
Multiply the numbers: 3⋅13=39=39
=39
=3948+253​​
=3948+253​​
=3948+253​​

Popular Examples

tan(pi/4+pi/3)(10)/(sin(60))sin^2(135)(-sec^2(pi/4))/(4cos(pi/4))7cos(60)

Frequently Asked Questions (FAQ)

  • What is the value of tan(arcsin(3/5)+pi/6) ?

    The value of tan(arcsin(3/5)+pi/6) is (48+25sqrt(3))/(39)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024