Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

14-sin(θ)=cos(2θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

14−sin(θ)=cos(2θ)

Solution

NoSolutionforθ∈R
Solution steps
14−sin(θ)=cos(2θ)
Subtract cos(2θ) from both sides14−sin(θ)−cos(2θ)=0
Rewrite using trig identities
14−cos(2θ)−sin(θ)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=14−(1−2sin2(θ))−sin(θ)
Simplify 14−(1−2sin2(θ))−sin(θ):2sin2(θ)−sin(θ)+13
14−(1−2sin2(θ))−sin(θ)
−(1−2sin2(θ)):−1+2sin2(θ)
−(1−2sin2(θ))
Distribute parentheses=−(1)−(−2sin2(θ))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2sin2(θ)
=14−1+2sin2(θ)−sin(θ)
Subtract the numbers: 14−1=13=2sin2(θ)−sin(θ)+13
=2sin2(θ)−sin(θ)+13
13−sin(θ)+2sin2(θ)=0
Solve by substitution
13−sin(θ)+2sin2(θ)=0
Let: sin(θ)=u13−u+2u2=0
13−u+2u2=0:u=41​+i4103​​,u=41​−i4103​​
13−u+2u2=0
Write in the standard form ax2+bx+c=02u2−u+13=0
Solve with the quadratic formula
2u2−u+13=0
Quadratic Equation Formula:
For a=2,b=−1,c=13u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅13​​
u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅13​​
Simplify (−1)2−4⋅2⋅13​:103​i
(−1)2−4⋅2⋅13​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅13=104
4⋅2⋅13
Multiply the numbers: 4⋅2⋅13=104=104
=1−104​
Subtract the numbers: 1−104=−103=−103​
Apply radical rule: −a​=−1​a​−103​=−1​103​=−1​103​
Apply imaginary number rule: −1​=i=103​i
u1,2​=2⋅2−(−1)±103​i​
Separate the solutionsu1​=2⋅2−(−1)+103​i​,u2​=2⋅2−(−1)−103​i​
u=2⋅2−(−1)+103​i​:41​+i4103​​
2⋅2−(−1)+103​i​
Apply rule −(−a)=a=2⋅21+103​i​
Multiply the numbers: 2⋅2=4=41+103​i​
Rewrite 41+103​i​ in standard complex form: 41​+4103​​i
41+103​i​
Apply the fraction rule: ca±b​=ca​±cb​41+103​i​=41​+4103​i​=41​+4103​i​
=41​+4103​​i
u=2⋅2−(−1)−103​i​:41​−i4103​​
2⋅2−(−1)−103​i​
Apply rule −(−a)=a=2⋅21−103​i​
Multiply the numbers: 2⋅2=4=41−103​i​
Rewrite 41−103​i​ in standard complex form: 41​−4103​​i
41−103​i​
Apply the fraction rule: ca±b​=ca​±cb​41−103​i​=41​−4103​i​=41​−4103​i​
=41​−4103​​i
The solutions to the quadratic equation are:u=41​+i4103​​,u=41​−i4103​​
Substitute back u=sin(θ)sin(θ)=41​+i4103​​,sin(θ)=41​−i4103​​
sin(θ)=41​+i4103​​,sin(θ)=41​−i4103​​
sin(θ)=41​+i4103​​:No Solution
sin(θ)=41​+i4103​​
NoSolution
sin(θ)=41​−i4103​​:No Solution
sin(θ)=41​−i4103​​
NoSolution
Combine all the solutionsNoSolutionforθ∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

csc(θ)=-5/13cos(z)=sqrt(3)4cos(2x)=1-3cos(x)0=32pisec(x^2)tan(x)1*sin(54.86)=2.451*sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 14-sin(θ)=cos(2θ) ?

    The general solution for 14-sin(θ)=cos(2θ) is No Solution for θ\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024