Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1+csc(γ))/(cot(γ)+cos(γ))=csc(γ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(γ)+cos(γ)1+csc(γ)​=csc(γ)

Solution

γ=4π​+πn
+1
Degrees
γ=45∘+180∘n
Solution steps
cot(γ)+cos(γ)1+csc(γ)​=csc(γ)
Subtract csc(γ) from both sidescot(γ)+cos(γ)1+csc(γ)​−csc(γ)=0
Simplify cot(γ)+cos(γ)1+csc(γ)​−csc(γ):cot(γ)+cos(γ)1+csc(γ)−csc(γ)(cot(γ)+cos(γ))​
cot(γ)+cos(γ)1+csc(γ)​−csc(γ)
Convert element to fraction: csc(γ)=cot(γ)+cos(γ)csc(γ)(cot(γ)+cos(γ))​=cot(γ)+cos(γ)1+csc(γ)​−cot(γ)+cos(γ)csc(γ)(cot(γ)+cos(γ))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cot(γ)+cos(γ)1+csc(γ)−csc(γ)(cot(γ)+cos(γ))​
cot(γ)+cos(γ)1+csc(γ)−csc(γ)(cot(γ)+cos(γ))​=0
g(x)f(x)​=0⇒f(x)=01+csc(γ)−csc(γ)(cot(γ)+cos(γ))=0
Express with sin, cos
1+csc(γ)−(cos(γ)+cot(γ))csc(γ)
Use the basic trigonometric identity: csc(x)=sin(x)1​=1+sin(γ)1​−(cos(γ)+cot(γ))sin(γ)1​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=1+sin(γ)1​−(cos(γ)+sin(γ)cos(γ)​)sin(γ)1​
Simplify 1+sin(γ)1​−(cos(γ)+sin(γ)cos(γ)​)sin(γ)1​:sin2(γ)sin2(γ)+sin(γ)−cos(γ)sin(γ)−cos(γ)​
1+sin(γ)1​−(cos(γ)+sin(γ)cos(γ)​)sin(γ)1​
(cos(γ)+sin(γ)cos(γ)​)sin(γ)1​=sin2(γ)cos(γ)sin(γ)+cos(γ)​
(cos(γ)+sin(γ)cos(γ)​)sin(γ)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(γ)1⋅(cos(γ)+sin(γ)cos(γ)​)​
1⋅(cos(γ)+sin(γ)cos(γ)​)=cos(γ)+sin(γ)cos(γ)​
1⋅(cos(γ)+sin(γ)cos(γ)​)
Multiply: 1⋅(cos(γ)+sin(γ)cos(γ)​)=(cos(γ)+sin(γ)cos(γ)​)=(cos(γ)+sin(γ)cos(γ)​)
Remove parentheses: (a)=a=cos(γ)+sin(γ)cos(γ)​
=sin(γ)cos(γ)+sin(γ)cos(γ)​​
Join cos(γ)+sin(γ)cos(γ)​:sin(γ)cos(γ)sin(γ)+cos(γ)​
cos(γ)+sin(γ)cos(γ)​
Convert element to fraction: cos(γ)=sin(γ)cos(γ)sin(γ)​=sin(γ)cos(γ)sin(γ)​+sin(γ)cos(γ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(γ)cos(γ)sin(γ)+cos(γ)​
=sin(γ)sin(γ)cos(γ)sin(γ)+cos(γ)​​
Apply the fraction rule: acb​​=c⋅ab​=sin(γ)sin(γ)cos(γ)sin(γ)+cos(γ)​
sin(γ)sin(γ)=sin2(γ)
sin(γ)sin(γ)
Apply exponent rule: ab⋅ac=ab+csin(γ)sin(γ)=sin1+1(γ)=sin1+1(γ)
Add the numbers: 1+1=2=sin2(γ)
=sin2(γ)cos(γ)sin(γ)+cos(γ)​
=1+sin(γ)1​−sin2(γ)cos(γ)sin(γ)+cos(γ)​
Convert element to fraction: 1=11​=11​+sin(γ)1​−sin2(γ)cos(γ)sin(γ)+cos(γ)​
Least Common Multiplier of 1,sin(γ),sin2(γ):sin2(γ)
1,sin(γ),sin2(γ)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=sin2(γ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin2(γ)
For 11​:multiply the denominator and numerator by sin2(γ)11​=1⋅sin2(γ)1⋅sin2(γ)​=sin2(γ)sin2(γ)​
For sin(γ)1​:multiply the denominator and numerator by sin(γ)sin(γ)1​=sin(γ)sin(γ)1⋅sin(γ)​=sin2(γ)sin(γ)​
=sin2(γ)sin2(γ)​+sin2(γ)sin(γ)​−sin2(γ)cos(γ)sin(γ)+cos(γ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(γ)sin2(γ)+sin(γ)−(cos(γ)sin(γ)+cos(γ))​
−(cos(γ)sin(γ)+cos(γ)):−cos(γ)sin(γ)−cos(γ)
−(cos(γ)sin(γ)+cos(γ))
Distribute parentheses=−(cos(γ)sin(γ))−(cos(γ))
Apply minus-plus rules+(−a)=−a=−cos(γ)sin(γ)−cos(γ)
=sin2(γ)sin2(γ)+sin(γ)−cos(γ)sin(γ)−cos(γ)​
=sin2(γ)sin2(γ)+sin(γ)−cos(γ)sin(γ)−cos(γ)​
sin2(γ)−cos(γ)+sin(γ)+sin2(γ)−cos(γ)sin(γ)​=0
g(x)f(x)​=0⇒f(x)=0−cos(γ)+sin(γ)+sin2(γ)−cos(γ)sin(γ)=0
Factor −cos(γ)+sin(γ)+sin2(γ)−cos(γ)sin(γ):(1+sin(γ))(−cos(γ)+sin(γ))
−cos(γ)+sin(γ)+sin2(γ)−cos(γ)sin(γ)
Factor out common term cos(γ)=−cos(γ)(1+sin(γ))+sin(γ)+sin2(γ)
Apply exponent rule: ab+c=abacsin2(γ)=sin(γ)sin(γ)=−cos(γ)(1+sin(γ))+sin(γ)+sin(γ)sin(γ)
Factor out common term sin(γ)=−cos(γ)(1+sin(γ))+sin(γ)(1+sin(γ))
Factor out common term (1+sin(γ))=(1+sin(γ))(−cos(γ)+sin(γ))
(1+sin(γ))(−cos(γ)+sin(γ))=0
Solving each part separately1+sin(γ)=0or−cos(γ)+sin(γ)=0
1+sin(γ)=0:γ=23π​+2πn
1+sin(γ)=0
Move 1to the right side
1+sin(γ)=0
Subtract 1 from both sides1+sin(γ)−1=0−1
Simplifysin(γ)=−1
sin(γ)=−1
General solutions for sin(γ)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
γ=23π​+2πn
γ=23π​+2πn
−cos(γ)+sin(γ)=0:γ=4π​+πn
−cos(γ)+sin(γ)=0
Rewrite using trig identities
−cos(γ)+sin(γ)=0
Divide both sides by cos(γ),cos(γ)=0cos(γ)−cos(γ)+sin(γ)​=cos(γ)0​
Simplify−1+cos(γ)sin(γ)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−1+tan(γ)=0
−1+tan(γ)=0
Move 1to the right side
−1+tan(γ)=0
Add 1 to both sides−1+tan(γ)+1=0+1
Simplifytan(γ)=1
tan(γ)=1
General solutions for tan(γ)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
γ=4π​+πn
γ=4π​+πn
Combine all the solutionsγ=23π​+2πn,γ=4π​+πn
Since the equation is undefined for:23π​+2πnγ=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)= 2/63sin(2x)=-2solvefor x,arctan(y)=2arctan(x)sin(2x)=-sqrt(3/2)tan(x)=(7.3)/(6.8)

Frequently Asked Questions (FAQ)

  • What is the general solution for (1+csc(γ))/(cot(γ)+cos(γ))=csc(γ) ?

    The general solution for (1+csc(γ))/(cot(γ)+cos(γ))=csc(γ) is γ= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024