Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(x/(12))-arctan(x)=0.001

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(12x​)−arctan(x)=0.001

Solution

x=2tan(10001​)−11+121−48tan2(10001​)​​,x=2tan(10001​)−11−121−48tan2(10001​)​​
Solution steps
arctan(12x​)−arctan(x)=0.001
Rewrite using trig identities
arctan(12x​)−arctan(x)
Use the Sum to Product identity: arctan(s)−arctan(t)=arctan(1+sts−t​)=arctan(1+12x​x12x​−x​)
arctan(1+12x​x12x​−x​)=0.001
Apply trig inverse properties
arctan(1+12x​x12x​−x​)=0.001
arctan(x)=a⇒x=tan(a)1+12x​x12x​−x​=tan(0.001)
tan(0.001)=tan(10001​)
tan(0.001)
1+12x​x12x​−x​=tan(10001​)
1+12x​x12x​−x​=tan(10001​)
Solve 1+12x​x12x​−x​=tan(10001​):x=2tan(10001​)−11+121−48tan2(10001​)​​,x=2tan(10001​)−11−121−48tan2(10001​)​​
1+12x​x12x​−x​=tan(10001​)
Simplify 1+12x​x12x​−x​:−12+x211x​
1+12x​x12x​−x​
12x​x=12x2​
12x​x
Multiply fractions: a⋅cb​=ca⋅b​=12xx​
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
=12x2​
=1+12x2​12x​−x​
Join 12x​−x:−1211x​
12x​−x
Convert element to fraction: x=12x12​=12x​−12x⋅12​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12x−x⋅12​
Add similar elements: x−12x=−11x=12−11x​
Apply the fraction rule: b−a​=−ba​=−1211x​
=1+12x2​−1211x​​
Apply the fraction rule: b−a​=−ba​=−1+12x2​1211x​​
Apply the fraction rule: acb​​=c⋅ab​1+12x2​1211x​​=12(1+12x2​)11x​=−12(1+12x2​)11x​
Join 1+12x2​:1212+x2​
1+12x2​
Convert element to fraction: 1=121⋅12​=121⋅12​+12x2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=121⋅12+x2​
Multiply the numbers: 1⋅12=12=1212+x2​
=−12⋅12x2+12​11x​
Multiply 12⋅1212+x2​:12+x2
12⋅1212+x2​
Multiply fractions: a⋅cb​=ca⋅b​=12(12+x2)⋅12​
Cancel the common factor: 12=12+x2
=−x2+1211x​
−12+x211x​=tan(10001​)
Multiply both sides by 12+x2
−12+x211x​=tan(10001​)
Multiply both sides by 12+x2−12+x211x​(12+x2)=tan(10001​)(12+x2)
Simplify−11x=tan(10001​)(12+x2)
−11x=tan(10001​)(12+x2)
Solve −11x=tan(10001​)(12+x2):x=2tan(10001​)−11+121−48tan2(10001​)​​,x=2tan(10001​)−11−121−48tan2(10001​)​​
−11x=tan(10001​)(12+x2)
Expand tan(10001​)(12+x2):12tan(10001​)+tan(10001​)x2
tan(10001​)(12+x2)
Apply the distributive law: a(b+c)=ab+aca=tan(10001​),b=12,c=x2=tan(10001​)⋅12+tan(10001​)x2
=12tan(10001​)+tan(10001​)x2
−11x=12tan(10001​)+tan(10001​)x2
Switch sides12tan(10001​)+tan(10001​)x2=−11x
Move 11xto the left side
12tan(10001​)+tan(10001​)x2=−11x
Add 11x to both sides12tan(10001​)+tan(10001​)x2+11x=−11x+11x
Simplify12tan(10001​)+tan(10001​)x2+11x=0
12tan(10001​)+tan(10001​)x2+11x=0
Write in the standard form ax2+bx+c=0tan(10001​)x2+11x+12tan(10001​)=0
Solve with the quadratic formula
tan(10001​)x2+11x+12tan(10001​)=0
Quadratic Equation Formula:
For a=tan(10001​),b=11,c=12tan(10001​)x1,2​=2tan(10001​)−11±112−4tan(10001​)⋅12tan(10001​)​​
x1,2​=2tan(10001​)−11±112−4tan(10001​)⋅12tan(10001​)​​
112−4tan(10001​)⋅12tan(10001​)​=121−48tan2(10001​)​
112−4tan(10001​)⋅12tan(10001​)​
4tan(10001​)⋅12tan(10001​)=48tan2(10001​)
4tan(10001​)⋅12tan(10001​)
Multiply the numbers: 4⋅12=48=48tan(10001​)tan(10001​)
Apply exponent rule: ab⋅ac=ab+ctan(10001​)tan(10001​)=tan1+1(10001​)=48tan1+1(10001​)
Add the numbers: 1+1=2=48tan2(10001​)
=112−48tan2(10001​)​
112=121=121−48tan2(10001​)​
x1,2​=2tan(10001​)−11±121−48tan2(10001​)​​
Separate the solutionsx1​=2tan(10001​)−11+121−48tan2(10001​)​​,x2​=2tan(10001​)−11−121−48tan2(10001​)​​
x=2tan(10001​)−11+121−48tan2(10001​)​​
x=2tan(10001​)−11−121−48tan2(10001​)​​
The solutions to the quadratic equation are:x=2tan(10001​)−11+121−48tan2(10001​)​​,x=2tan(10001​)−11−121−48tan2(10001​)​​
x=2tan(10001​)−11+121−48tan2(10001​)​​,x=2tan(10001​)−11−121−48tan2(10001​)​​
x=2tan(10001​)−11+121−48tan2(10001​)​​,x=2tan(10001​)−11−121−48tan2(10001​)​​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(12x​)−arctan(x)=0.001
Remove the ones that don't agree with the equation.
Check the solution 2tan(10001​)−11+121−48tan2(10001​)​​:True
2tan(10001​)−11+121−48tan2(10001​)​​
Plug in n=12tan(10001​)−11+121−48tan2(10001​)​​
For arctan(12x​)−arctan(x)=0.001plug inx=2tan(10001​)−11+121−48tan2(10001​)​​arctan​122tan(10001​)−11+121−48tan2(10001​)​​​​−arctan​2tan(10001​)−11+121−48tan2(10001​)​​​=0.001
Refine0.00099…=0.001
⇒True
Check the solution 2tan(10001​)−11−121−48tan2(10001​)​​:True
2tan(10001​)−11−121−48tan2(10001​)​​
Plug in n=12tan(10001​)−11−121−48tan2(10001​)​​
For arctan(12x​)−arctan(x)=0.001plug inx=2tan(10001​)−11−121−48tan2(10001​)​​arctan​122tan(10001​)−11−121−48tan2(10001​)​​​​−arctan​2tan(10001​)−11−121−48tan2(10001​)​​​=0.001
Refine0.001=0.001
⇒True
x=2tan(10001​)−11+121−48tan2(10001​)​​,x=2tan(10001​)−11−121−48tan2(10001​)​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2=2cos(pi+x)cot(x)+csc(x)cos(x)=2,cot(x)-4cos(3θ)=1960=480(1-cos(7.5x))8=8tan(θ)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024