Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)=(2-tan(x))(1+sin(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)=(2−tan(x))(1+sin(x))

Solution

x=3π​+2πn,x=35π​+2πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n
Solution steps
cos(x)=(2−tan(x))(1+sin(x))
Subtract (2−tan(x))(1+sin(x)) from both sidescos(x)−(2−tan(x))(1+sin(x))=0
Express with sin, cos
cos(x)−(1+sin(x))(2−tan(x))
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x)−(1+sin(x))(2−cos(x)sin(x)​)
Simplify cos(x)−(1+sin(x))(2−cos(x)sin(x)​):cos(x)cos2(x)−(2cos(x)−sin(x))(1+sin(x))​
cos(x)−(1+sin(x))(2−cos(x)sin(x)​)
(1+sin(x))(2−cos(x)sin(x)​)=cos(x)(2cos(x)−sin(x))(1+sin(x))​
(1+sin(x))(2−cos(x)sin(x)​)
Join 2−cos(x)sin(x)​:cos(x)2cos(x)−sin(x)​
2−cos(x)sin(x)​
Convert element to fraction: 2=cos(x)2cos(x)​=cos(x)2cos(x)​−cos(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)2cos(x)−sin(x)​
=cos(x)2cos(x)−sin(x)​(sin(x)+1)
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)(2cos(x)−sin(x))(1+sin(x))​
=cos(x)−cos(x)(2cos(x)−sin(x))(sin(x)+1)​
Convert element to fraction: cos(x)=cos(x)cos(x)cos(x)​=cos(x)cos(x)cos(x)​−cos(x)(2cos(x)−sin(x))(1+sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)cos(x)cos(x)−(2cos(x)−sin(x))(1+sin(x))​
cos(x)cos(x)−(2cos(x)−sin(x))(1+sin(x))=cos2(x)−(2cos(x)−sin(x))(1+sin(x))
cos(x)cos(x)−(2cos(x)−sin(x))(1+sin(x))
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=cos2(x)−(2cos(x)−sin(x))(sin(x)+1)
=cos(x)cos2(x)−(2cos(x)−sin(x))(sin(x)+1)​
=cos(x)cos2(x)−(2cos(x)−sin(x))(1+sin(x))​
cos(x)cos2(x)−(−sin(x)+2cos(x))(1+sin(x))​=0
g(x)f(x)​=0⇒f(x)=0cos2(x)−(−sin(x)+2cos(x))(1+sin(x))=0
Rewrite using trig identities
cos2(x)−(−sin(x)+2cos(x))(1+sin(x))
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)−(−sin(x)+2cos(x))(1+sin(x))
Simplify 1−sin2(x)−(−sin(x)+2cos(x))(1+sin(x)):sin(x)−2cos(x)−2cos(x)sin(x)+1
1−sin2(x)−(−sin(x)+2cos(x))(1+sin(x))
Expand −(−sin(x)+2cos(x))(1+sin(x)):sin(x)+sin2(x)−2cos(x)−2cos(x)sin(x)
Expand (−sin(x)+2cos(x))(1+sin(x)):−sin(x)−sin2(x)+2cos(x)+2cos(x)sin(x)
(−sin(x)+2cos(x))(1+sin(x))
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=−sin(x),b=2cos(x),c=1,d=sin(x)=(−sin(x))⋅1+(−sin(x))sin(x)+2cos(x)⋅1+2cos(x)sin(x)
Apply minus-plus rules+(−a)=−a=−1⋅sin(x)−sin(x)sin(x)+2⋅1⋅cos(x)+2cos(x)sin(x)
Simplify −1⋅sin(x)−sin(x)sin(x)+2⋅1⋅cos(x)+2cos(x)sin(x):−sin(x)−sin2(x)+2cos(x)+2cos(x)sin(x)
−1⋅sin(x)−sin(x)sin(x)+2⋅1⋅cos(x)+2cos(x)sin(x)
1⋅sin(x)=sin(x)
1⋅sin(x)
Multiply: 1⋅sin(x)=sin(x)=sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1⋅cos(x)
Multiply the numbers: 2⋅1=2=2cos(x)
=−sin(x)−sin2(x)+2cos(x)+2cos(x)sin(x)
=−sin(x)−sin2(x)+2cos(x)+2cos(x)sin(x)
=−(−sin(x)−sin2(x)+2cos(x)+2cos(x)sin(x))
Distribute parentheses=−(−sin(x))−(−sin2(x))−(2cos(x))−(2cos(x)sin(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=sin(x)+sin2(x)−2cos(x)−2cos(x)sin(x)
=1−sin2(x)+sin(x)+sin2(x)−2cos(x)−2cos(x)sin(x)
Simplify 1−sin2(x)+sin(x)+sin2(x)−2cos(x)−2cos(x)sin(x):sin(x)−2cos(x)−2cos(x)sin(x)+1
1−sin2(x)+sin(x)+sin2(x)−2cos(x)−2cos(x)sin(x)
Group like terms=−sin2(x)+sin(x)+sin2(x)−2cos(x)−2cos(x)sin(x)+1
Add similar elements: −sin2(x)+sin2(x)=0=sin(x)−2cos(x)−2cos(x)sin(x)+1
=sin(x)−2cos(x)−2cos(x)sin(x)+1
=sin(x)−2cos(x)−2cos(x)sin(x)+1
1+sin(x)−2cos(x)−2cos(x)sin(x)=0
Factor 1+sin(x)−2cos(x)−2cos(x)sin(x):(1−2cos(x))(sin(x)+1)
1+sin(x)−2cos(x)−2cos(x)sin(x)
Factor out common term sin(x)=1+sin(x)(1−2cos(x))−2cos(x)
Rewrite as=(1−2cos(x))sin(x)+1⋅(1−2cos(x))
Factor out common term (1−2cos(x))=(1−2cos(x))(sin(x)+1)
(1−2cos(x))(sin(x)+1)=0
Solving each part separately1−2cos(x)=0orsin(x)+1=0
1−2cos(x)=0:x=3π​+2πn,x=35π​+2πn
1−2cos(x)=0
Move 1to the right side
1−2cos(x)=0
Subtract 1 from both sides1−2cos(x)−1=0−1
Simplify−2cos(x)=−1
−2cos(x)=−1
Divide both sides by −2
−2cos(x)=−1
Divide both sides by −2−2−2cos(x)​=−2−1​
Simplifycos(x)=21​
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
sin(x)+1=0:x=23π​+2πn
sin(x)+1=0
Move 1to the right side
sin(x)+1=0
Subtract 1 from both sidessin(x)+1−1=0−1
Simplifysin(x)=−1
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
Combine all the solutionsx=3π​+2πn,x=35π​+2πn,x=23π​+2πn
Since the equation is undefined for:23π​+2πnx=3π​+2πn,x=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)= 13/85sin(2x)=((6m-5))/8cos(θ)= 3/(sqrt(45))cos^2(x)= 9/16sin(4x)=0.5

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)=(2-tan(x))(1+sin(x)) ?

    The general solution for cos(x)=(2-tan(x))(1+sin(x)) is x= pi/3+2pin,x=(5pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024