Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)= 5/3 sin(x)[0.2pi]

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)=35​sin(x)[0.2π]

Solution

x=2πn,x=π+2πn,x=0.30137…+2πn,x=2π−0.30137…+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=17.26743…∘+360∘n,x=342.73256…∘+360∘n
Solution steps
tan(x)=35​sin(x)[0.2π]
Subtract 35​sin(x)[0.2π] from both sidestan(x)−3π​sin(x)=0
Simplify tan(x)−3π​sin(x):33tan(x)−πsin(x)​
tan(x)−3π​sin(x)
Multiply 3π​sin(x):3πsin(x)​
3π​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=3πsin(x)​
=tan(x)−3πsin(x)​
Convert element to fraction: tan(x)=3tan(x)3​=3tan(x)⋅3​−3πsin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3tan(x)⋅3−πsin(x)​
33tan(x)−πsin(x)​=0
g(x)f(x)​=0⇒f(x)=03tan(x)−πsin(x)=0
Express with sin, cos
3tan(x)−sin(x)π
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=3⋅cos(x)sin(x)​−sin(x)π
Simplify 3⋅cos(x)sin(x)​−sin(x)π:cos(x)3sin(x)−πsin(x)cos(x)​
3⋅cos(x)sin(x)​−sin(x)π
Multiply 3⋅cos(x)sin(x)​:cos(x)3sin(x)​
3⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅3​
=cos(x)3sin(x)​−πsin(x)
Convert element to fraction: πsin(x)=cos(x)sin(x)πcos(x)​=cos(x)sin(x)⋅3​−cos(x)sin(x)πcos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)⋅3−sin(x)πcos(x)​
=cos(x)3sin(x)−πsin(x)cos(x)​
cos(x)3sin(x)−cos(x)sin(x)π​=0
g(x)f(x)​=0⇒f(x)=03sin(x)−cos(x)sin(x)π=0
Factor 3sin(x)−cos(x)sin(x)π:−sin(x)(πcos(x)−3)
3sin(x)−cos(x)sin(x)π
Factor out common term −sin(x)=−sin(x)(−3+πcos(x))
−sin(x)(πcos(x)−3)=0
Solving each part separatelysin(x)=0orπcos(x)−3=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
πcos(x)−3=0:x=arccos(π3​)+2πn,x=2π−arccos(π3​)+2πn
πcos(x)−3=0
Move 3to the right side
πcos(x)−3=0
Add 3 to both sidesπcos(x)−3+3=0+3
Simplifyπcos(x)=3
πcos(x)=3
Divide both sides by π
πcos(x)=3
Divide both sides by πππcos(x)​=π3​
Simplifycos(x)=π3​
cos(x)=π3​
Apply trig inverse properties
cos(x)=π3​
General solutions for cos(x)=π3​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(π3​)+2πn,x=2π−arccos(π3​)+2πn
x=arccos(π3​)+2πn,x=2π−arccos(π3​)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arccos(π3​)+2πn,x=2π−arccos(π3​)+2πn
Show solutions in decimal formx=2πn,x=π+2πn,x=0.30137…+2πn,x=2π−0.30137…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin^2(x)-cos^2(x)=0cos(pi/2-x)=cos(pi/2)-cos(x)-3cos(pi/2-θ)=tan(θ)3tan^2(x/3)=10.3=sin(9x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024