Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sin(x)=2sec(x)tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sin(x)=2sec(x)tan(x)

Solution

x=2πn,x=π+2πn,x=2.52611…+2πn,x=−2.52611…+2πn,x=0.61547…+2πn,x=2π−0.61547…+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=144.73561…∘+360∘n,x=−144.73561…∘+360∘n,x=35.26438…∘+360∘n,x=324.73561…∘+360∘n
Solution steps
3sin(x)=2sec(x)tan(x)
Subtract 2sec(x)tan(x) from both sides3sin(x)−2sec(x)tan(x)=0
Express with sin, cos
3sin(x)−2sec(x)tan(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=3sin(x)−2⋅cos(x)1​tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=3sin(x)−2⋅cos(x)1​⋅cos(x)sin(x)​
Simplify 3sin(x)−2⋅cos(x)1​⋅cos(x)sin(x)​:cos2(x)3cos2(x)sin(x)−2sin(x)​
3sin(x)−2⋅cos(x)1​⋅cos(x)sin(x)​
2⋅cos(x)1​⋅cos(x)sin(x)​=cos2(x)2sin(x)​
2⋅cos(x)1​⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=cos(x)cos(x)1⋅sin(x)⋅2​
Multiply the numbers: 1⋅2=2=cos(x)cos(x)2sin(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=cos2(x)2sin(x)​
=3sin(x)−cos2(x)2sin(x)​
Convert element to fraction: 3sin(x)=cos2(x)3sin(x)cos2(x)​=cos2(x)3sin(x)cos2(x)​−cos2(x)2sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)3sin(x)cos2(x)−2sin(x)​
=cos2(x)3cos2(x)sin(x)−2sin(x)​
cos2(x)−2sin(x)+3cos2(x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0−2sin(x)+3cos2(x)sin(x)=0
Factor −2sin(x)+3cos2(x)sin(x):sin(x)(3​cos(x)+2​)(3​cos(x)−2​)
−2sin(x)+3cos2(x)sin(x)
Factor out common term sin(x)=sin(x)(−2+3cos2(x))
Factor 3cos2(x)−2:(3​cos(x)+2​)(3​cos(x)−2​)
3cos2(x)−2
Rewrite 3cos2(x)−2 as (3​cos(x))2−(2​)2
3cos2(x)−2
Apply radical rule: a=(a​)23=(3​)2=(3​)2cos2(x)−2
Apply radical rule: a=(a​)22=(2​)2=(3​)2cos2(x)−(2​)2
Apply exponent rule: ambm=(ab)m(3​)2cos2(x)=(3​cos(x))2=(3​cos(x))2−(2​)2
=(3​cos(x))2−(2​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​cos(x))2−(2​)2=(3​cos(x)+2​)(3​cos(x)−2​)=(3​cos(x)+2​)(3​cos(x)−2​)
=sin(x)(3​cos(x)+2​)(3​cos(x)−2​)
sin(x)(3​cos(x)+2​)(3​cos(x)−2​)=0
Solving each part separatelysin(x)=0or3​cos(x)+2​=0or3​cos(x)−2​=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
3​cos(x)+2​=0:x=arccos(−32​​)+2πn,x=−arccos(−32​​)+2πn
3​cos(x)+2​=0
Move 2​to the right side
3​cos(x)+2​=0
Subtract 2​ from both sides3​cos(x)+2​−2​=0−2​
Simplify3​cos(x)=−2​
3​cos(x)=−2​
Divide both sides by 3​
3​cos(x)=−2​
Divide both sides by 3​3​3​cos(x)​=3​−2​​
Simplify
3​3​cos(x)​=3​−2​​
Simplify 3​3​cos(x)​:cos(x)
3​3​cos(x)​
Cancel the common factor: 3​=cos(x)
Simplify 3​−2​​:−32​​
3​−2​​
Apply the fraction rule: b−a​=−ba​=−3​2​​
Combine same powers : y​x​​=yx​​=−32​​
cos(x)=−32​​
cos(x)=−32​​
cos(x)=−32​​
Apply trig inverse properties
cos(x)=−32​​
General solutions for cos(x)=−32​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−32​​)+2πn,x=−arccos(−32​​)+2πn
x=arccos(−32​​)+2πn,x=−arccos(−32​​)+2πn
3​cos(x)−2​=0:x=arccos(32​​)+2πn,x=2π−arccos(32​​)+2πn
3​cos(x)−2​=0
Move 2​to the right side
3​cos(x)−2​=0
Add 2​ to both sides3​cos(x)−2​+2​=0+2​
Simplify3​cos(x)=2​
3​cos(x)=2​
Divide both sides by 3​
3​cos(x)=2​
Divide both sides by 3​3​3​cos(x)​=3​2​​
Simplify
3​3​cos(x)​=3​2​​
Simplify 3​3​cos(x)​:cos(x)
3​3​cos(x)​
Cancel the common factor: 3​=cos(x)
Simplify 3​2​​:32​​
3​2​​
Combine same powers : y​x​​=yx​​=32​​
cos(x)=32​​
cos(x)=32​​
cos(x)=32​​
Apply trig inverse properties
cos(x)=32​​
General solutions for cos(x)=32​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(32​​)+2πn,x=2π−arccos(32​​)+2πn
x=arccos(32​​)+2πn,x=2π−arccos(32​​)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arccos(−32​​)+2πn,x=−arccos(−32​​)+2πn,x=arccos(32​​)+2πn,x=2π−arccos(32​​)+2πn
Show solutions in decimal formx=2πn,x=π+2πn,x=2.52611…+2πn,x=−2.52611…+2πn,x=0.61547…+2πn,x=2π−0.61547…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

12sin(x)+5cos(x)=0sin(x)=2sin(2x)9sin(x-0.5pi)+8=0sec(-135)-cot(x)=2csc(x-30)=2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024