Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan^3(x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan3(x)−1=0

Solution

x=0.60625…+πn
+1
Degrees
x=34.73594…∘+180∘n
Solution steps
3tan3(x)−1=0
Solve by substitution
3tan3(x)−1=0
Let: tan(x)=u3u3−1=0
3u3−1=0
Move 1to the right side
3u3−1=0
Add 1 to both sides3u3−1+1=0+1
Simplify3u3=1
3u3=1
Divide both sides by 3
3u3=1
Divide both sides by 333u3​=31​
Simplifyu3=31​
u3=31​
For x3=f(a) the solutions are
Simplify
Multiply fractions: a⋅cb​=ca⋅b​
Apply radical rule: assuming a≥0,b≥0
Apply rule
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
1⋅(−1+3​i)=−1+3​i
1⋅(−1+3​i)
Multiply: 1⋅(−1+3​i)=(−1+3​i)=(−1+3​i)
Remove parentheses: (−a)=−a=−1+3​i
Apply the fraction rule: acb​​=c⋅ab​
Rationalize
Multiply by the conjugate 332​332​​
Apply exponent rule: ab⋅ac=ab+c=332​+31​⋅2
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=3⋅2
Multiply the numbers: 3⋅2=6=6
=6332​(−1+3​i)​
=6332​(−1+3​i)​
Rewrite 6332​(−1+3​i)​ in standard complex form:
6332​(−1+3​i)​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅3332​(−1+3​i)​
Cancel 2⋅3332​(−1+3​i)​:2⋅331​−1+3​i​
2⋅3332​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​3332​​=31−32​1​=2⋅3−32​+1−1+3​i​
Subtract the numbers: 1−32​=31​=2⋅331​−1+3​i​
=2⋅331​−1+3​i​
Apply radical rule:
Apply the fraction rule: ca±b​=ca​±cb​
Cancel
Cancel
Apply radical rule: =2⋅331​321​i​
Apply exponent rule: xbxa​=xa−b331​321​​=321​−31​=2321​−31​i​
Subtract the numbers: 21​−31​=61​=2361​i​
Apply radical rule:
Multiply by the conjugate 332​332​​
1⋅332​=332​
Apply exponent rule: ab⋅ac=ab+c=2⋅332​+31​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=2⋅3
Multiply the numbers: 2⋅3=6=6
=−6332​​
Simplify
Multiply fractions: a⋅cb​=ca⋅b​
Apply radical rule: assuming a≥0,b≥0
Apply rule
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
1⋅(−1−3​i)=−1−3​i
1⋅(−1−3​i)
Multiply: 1⋅(−1−3​i)=(−1−3​i)=(−1−3​i)
Remove parentheses: (−a)=−a=−1−3​i
Apply the fraction rule: acb​​=c⋅ab​
Rationalize
Multiply by the conjugate 332​332​​
Apply exponent rule: ab⋅ac=ab+c=332​+31​⋅2
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=3⋅2
Multiply the numbers: 3⋅2=6=6
=6332​(−1−3​i)​
=6332​(−1−3​i)​
Rewrite 6332​(−1−3​i)​ in standard complex form:
6332​(−1−3​i)​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅3332​(−1−3​i)​
Cancel 2⋅3332​(−1−3​i)​:2⋅331​−1−3​i​
2⋅3332​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​3332​​=31−32​1​=2⋅3−32​+1−1−3​i​
Subtract the numbers: 1−32​=31​=2⋅331​−1−3​i​
=2⋅331​−1−3​i​
Apply radical rule:
Apply the fraction rule: ca±b​=ca​±cb​
Cancel
Cancel
Apply radical rule: =2⋅331​321​i​
Apply exponent rule: xbxa​=xa−b331​321​​=321​−31​=2321​−31​i​
Subtract the numbers: 21​−31​=61​=2361​i​
Apply radical rule:
Multiply by the conjugate 332​332​​
1⋅332​=332​
Apply exponent rule: ab⋅ac=ab+c=2⋅332​+31​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=2⋅3
Multiply the numbers: 2⋅3=6=6
=−6332​​
Substitute back u=tan(x)
Apply trig inverse properties
General solutions for tan(x)=a⇒x=arctan(a)+πn
No Solution
NoSolution
No Solution
NoSolution
Combine all the solutions
Show solutions in decimal formx=0.60625…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-2csc^2(2x)=01-cos(θ)=sqrt(3)sin(θ)tan^2(x)=5sin^2(x)2sin^2(x)-sin(2x)=0cos(2x)cos(x)-sin(2x)sin(x)=0.5

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tan^3(x)-1=0 ?

    The general solution for 3tan^3(x)-1=0 is x=0.60625…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024