Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin(x)+arcsin(sqrt(3)x)= pi/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(x)+arcsin(3​x)=2π​

Solution

x=21​
Solution steps
arcsin(x)+arcsin(3​x)=2π​
Rewrite using trig identities
arcsin(x)+arcsin(3​x)
Use the Sum to Product identity: arcsin(s)+arcsin(t)=arcsin(s1−t2​+t1−s2​)=arcsin(x1−(3​x)2​+3​x1−x2​)
arcsin(x1−(3​x)2​+3​x1−x2​)=2π​
Apply trig inverse properties
arcsin(x1−(3​x)2​+3​x1−x2​)=2π​
arcsin(x)=a⇒x=sin(a)x1−(3​x)2​+3​x1−x2​=sin(2π​)
sin(2π​)=1
sin(2π​)
Use the following trivial identity:sin(2π​)=1
sin(2π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=1
x1−(3​x)2​+3​x1−x2​=1
x1−(3​x)2​+3​x1−x2​=1
Solve x1−(3​x)2​+3​x1−x2​=1:x=21​
x1−(3​x)2​+3​x1−x2​=1
Remove square roots
x1−(3​x)2​+3​x1−x2​=1
Subtract 3​x1−x2​ from both sidesx1−(3​x)2​+3​x1−x2​−3​x1−x2​=1−3​x1−x2​
Simplify1−(3​x)2​x=1−3​x1−x2​
Square both sides:x2−3x4=1−23​x1−x2​+3x2−3x4
x1−(3​x)2​+3​x1−x2​=1
(1−(3​x)2​x)2=(1−3​x1−x2​)2
Expand (1−(3​x)2​x)2:x2−3x4
(1−(3​x)2​x)2
Apply exponent rule: (a⋅b)n=anbn=x2(1−(3​x)2​)2
(1−(3​x)2​)2:1−(3​x)2
Apply radical rule: a​=a21​=((1−(3​x)2)21​)2
Apply exponent rule: (ab)c=abc=(1−(3​x)2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−(3​x)2
=(1−(3​x)2)x2
Expand (1−(3​x)2)x2:x2−3x4
(1−(3​x)2)x2
(3​x)2=3x2
(3​x)2
Apply exponent rule: (a⋅b)n=anbn=(3​)2x2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3x2
=x2(−3x2+1)
=x2(1−3x2)
Apply the distributive law: a(b−c)=ab−aca=x2,b=1,c=3x2=x2⋅1−x2⋅3x2
=1⋅x2−3x2x2
Simplify 1⋅x2−3x2x2:x2−3x4
1⋅x2−3x2x2
1⋅x2=x2
1⋅x2
Multiply: 1⋅x2=x2=x2
3x2x2=3x4
3x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=3x2+2
Add the numbers: 2+2=4=3x4
=x2−3x4
=x2−3x4
=x2−3x4
Expand (1−3​x1−x2​)2:1−23​x1−x2​+3x2−3x4
(1−3​x1−x2​)2
=(1−3​1−x2​x)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=3​x1−x2​
=12−2⋅1⋅3​x1−x2​+(3​x1−x2​)2
Simplify 12−2⋅1⋅3​x1−x2​+(3​x1−x2​)2:1−23​1−x2​x+31−x2x2
12−2⋅1⋅3​x1−x2​+(3​x1−x2​)2
Apply rule 1a=112=1=1−2⋅1⋅3​1−x2​x+(3​1−x2​x)2
2⋅1⋅3​x1−x2​=23​1−x2​x
2⋅1⋅3​x1−x2​
Multiply the numbers: 2⋅1=2=23​1−x2​x
(3​x1−x2​)2=31−x2x2
(3​x1−x2​)2
Apply exponent rule: (a⋅b)n=anbn=(3​)2x2(1−x2​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3x2(1−x2​)2
(1−x2​)2:1−x2
Apply radical rule: a​=a21​=((1−x2)21​)2
Apply exponent rule: (ab)c=abc=(1−x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−x2
=3x2(1−x2)
=1−23​1−x2​x+3(1−x2)x2
=1−23​1−x2​x+3(1−x2)x2
Expand 1−23​1−x2​x+3(1−x2)x2:1−23​x1−x2​+3x2−3x4
1−23​1−x2​x+3(1−x2)x2
=1−23​x1−x2​+3x2(1−x2)
Expand 3x2(1−x2):3x2−3x4
3x2(1−x2)
Apply the distributive law: a(b−c)=ab−aca=3x2,b=1,c=x2=3x2⋅1−3x2x2
=3⋅1⋅x2−3x2x2
Simplify 3⋅1⋅x2−3x2x2:3x2−3x4
3⋅1⋅x2−3x2x2
3⋅1⋅x2=3x2
3⋅1⋅x2
Multiply the numbers: 3⋅1=3=3x2
3x2x2=3x4
3x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=3x2+2
Add the numbers: 2+2=4=3x4
=3x2−3x4
=3x2−3x4
=1−23​1−x2​x+3x2−3x4
=1−23​x1−x2​+3x2−3x4
=1−23​x1−x2​+3x2−3x4
x2−3x4=1−23​x1−x2​+3x2−3x4
x2−3x4=1−23​x1−x2​+3x2−3x4
Subtract 3x2−3x4 from both sidesx2−3x4−(3x2−3x4)=1−23​x1−x2​+3x2−3x4−(3x2−3x4)
Simplify−2x2=−23​1−x2​x+1
Subtract 1 from both sides−2x2−1=−23​1−x2​x+1−1
Simplify−2x2−1=−23​1−x2​x
Square both sides:4x4+4x2+1=12x2−12x4
x2−3x4=1−23​x1−x2​+3x2−3x4
(−2x2−1)2=(−23​1−x2​x)2
Expand (−2x2−1)2:4x4+4x2+1
(−2x2−1)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=−2x2,b=1
=(−2x2)2−2(−2x2)⋅1+12
Simplify (−2x2)2−2(−2x2)⋅1+12:4x4+4x2+1
(−2x2)2−2(−2x2)⋅1+12
Apply rule 1a=112=1=(−2x2)2−2⋅1⋅(−2x2)+1
Apply rule −(−a)=a=(−2x2)2+2⋅2x2⋅1+1
(−2x2)2=4x4
(−2x2)2
Apply exponent rule: (−a)n=an,if n is even(−2x2)2=(2x2)2=(2x2)2
Apply exponent rule: (a⋅b)n=anbn=22(x2)2
(x2)2:x4
Apply exponent rule: (ab)c=abc=x2⋅2
Multiply the numbers: 2⋅2=4=x4
=22x4
22=4=4x4
2⋅2x2⋅1=4x2
2⋅2x2⋅1
Multiply the numbers: 2⋅2⋅1=4=4x2
=4x4+4x2+1
=4x4+4x2+1
Expand (−23​1−x2​x)2:12x2−12x4
(−23​1−x2​x)2
Apply exponent rule: (−a)n=an,if n is even(−23​1−x2​x)2=(23​1−x2​x)2=(23​1−x2​x)2
Apply exponent rule: (a⋅b)n=anbn=22(3​)2x2(1−x2​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22⋅3(1−x2​)2x2
(1−x2​)2:1−x2
Apply radical rule: a​=a21​=((1−x2)21​)2
Apply exponent rule: (ab)c=abc=(1−x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−x2
=22⋅3(1−x2)x2
Refine=12(1−x2)x2
Expand 12(1−x2)x2:12x2−12x4
12(1−x2)x2
=12x2(1−x2)
Apply the distributive law: a(b−c)=ab−aca=12x2,b=1,c=x2=12x2⋅1−12x2x2
=12⋅1⋅x2−12x2x2
Simplify 12⋅1⋅x2−12x2x2:12x2−12x4
12⋅1⋅x2−12x2x2
12⋅1⋅x2=12x2
12⋅1⋅x2
Multiply the numbers: 12⋅1=12=12x2
12x2x2=12x4
12x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=12x2+2
Add the numbers: 2+2=4=12x4
=12x2−12x4
=12x2−12x4
=12x2−12x4
4x4+4x2+1=12x2−12x4
4x4+4x2+1=12x2−12x4
4x4+4x2+1=12x2−12x4
Solve 4x4+4x2+1=12x2−12x4:x=21​,x=−21​
4x4+4x2+1=12x2−12x4
Move 12x4to the left side
4x4+4x2+1=12x2−12x4
Add 12x4 to both sides4x4+4x2+1+12x4=12x2−12x4+12x4
Simplify16x4+4x2+1=12x2
16x4+4x2+1=12x2
Move 12x2to the left side
16x4+4x2+1=12x2
Subtract 12x2 from both sides16x4+4x2+1−12x2=12x2−12x2
Simplify16x4−8x2+1=0
16x4−8x2+1=0
Rewrite the equation with u=x2 and u2=x416u2−8u+1=0
Solve 16u2−8u+1=0:u=41​
16u2−8u+1=0
Solve with the quadratic formula
16u2−8u+1=0
Quadratic Equation Formula:
For a=16,b=−8,c=1u1,2​=2⋅16−(−8)±(−8)2−4⋅16⋅1​​
u1,2​=2⋅16−(−8)±(−8)2−4⋅16⋅1​​
(−8)2−4⋅16⋅1=0
(−8)2−4⋅16⋅1
Apply exponent rule: (−a)n=an,if n is even(−8)2=82=82−4⋅16⋅1
Multiply the numbers: 4⋅16⋅1=64=82−64
82=64=64−64
Subtract the numbers: 64−64=0=0
u1,2​=2⋅16−(−8)±0​​
u=2⋅16−(−8)​
2⋅16−(−8)​=41​
2⋅16−(−8)​
Apply rule −(−a)=a=2⋅168​
Multiply the numbers: 2⋅16=32=328​
Cancel the common factor: 8=41​
u=41​
The solution to the quadratic equation is:u=41​
u=41​
Substitute back u=x2,solve for x
Solve x2=41​:x=21​,x=−21​
x2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=41​​,x=−41​​
41​​=21​
41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​1​​
Apply radical rule: 1​=11​=1=4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=21​
−41​​=−21​
−41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​1​​
Apply radical rule: 1​=11​=1=−4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−21​
x=21​,x=−21​
The solutions are
x=21​,x=−21​
x=21​,x=−21​
Verify Solutions:x=21​True,x=−21​False
Check the solutions by plugging them into x1−(3​x)2​+3​x1−x2​=1
Remove the ones that don't agree with the equation.
Plug in x=21​:True
(21​)1−(3​(21​))2​+3​(21​)1−(21​)2​=1
(21​)1−(3​(21​))2​+3​(21​)1−(21​)2​=1
(21​)1−(3​(21​))2​+3​(21​)1−(21​)2​
Remove parentheses: (a)=a=21​1−(3​21​)2​+3​21​1−(21​)2​
21​1−(3​21​)2​=41​
21​1−(3​21​)2​
1−(3​21​)2​=21​
1−(3​21​)2​
(3​21​)2=43​
(3​21​)2
Multiply 3​21​:23​​
3​21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​​
Multiply: 1⋅3​=3​=23​​
=(23​​)2
Apply exponent rule: (ba​)c=bcac​=22(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=223​
22=4=43​
=1−43​​
Join 1−43​:41​
1−43​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​
1⋅4−3=1
1⋅4−3
Multiply the numbers: 1⋅4=4=4−3
Subtract the numbers: 4−3=1=1
=41​
=41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
=21​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅1​
Multiply the numbers: 1⋅1=1=2⋅21​
Multiply the numbers: 2⋅2=4=41​
3​21​1−(21​)2​=43​
3​21​1−(21​)2​
1−(21​)2​=23​​
1−(21​)2​
(21​)2=41​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=3​21​⋅23​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=2⋅21⋅3​3​​
1⋅3​3​=3
1⋅3​3​
Apply radical rule: a​a​=a3​3​=3=1⋅3
Multiply the numbers: 1⋅3=3=3
=2⋅23​
Multiply the numbers: 2⋅2=4=43​
=41​+43​
Apply rule ca​±cb​=ca±b​=41+3​
Add the numbers: 1+3=4=44​
Apply rule aa​=1=1
1=1
True
Plug in x=−21​:False
(−21​)1−(3​(−21​))2​+3​(−21​)1−(−21​)2​=1
(−21​)1−(3​(−21​))2​+3​(−21​)1−(−21​)2​=−1
(−21​)1−(3​(−21​))2​+3​(−21​)1−(−21​)2​
Remove parentheses: (−a)=−a=−21​1−(−3​21​)2​−3​21​1−(−21​)2​
21​1−(−3​21​)2​=41​
21​1−(−3​21​)2​
1−(−3​21​)2​=21​
1−(−3​21​)2​
(−3​21​)2=43​
(−3​21​)2
Multiply −3​21​:−23​​
−3​21​
Multiply fractions: a⋅cb​=ca⋅b​=−21⋅3​​
Multiply: 1⋅3​=3​=−23​​
=(−23​​)2
Apply exponent rule: (−a)n=an,if n is even(−23​​)2=(23​​)2=(23​​)2
Apply exponent rule: (ba​)c=bcac​=22(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=223​
22=4=43​
=1−43​​
Join 1−43​:41​
1−43​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​
1⋅4−3=1
1⋅4−3
Multiply the numbers: 1⋅4=4=4−3
Subtract the numbers: 4−3=1=1
=41​
=41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
=21​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅1​
Multiply the numbers: 1⋅1=1=2⋅21​
Multiply the numbers: 2⋅2=4=41​
3​21​1−(−21​)2​=43​
3​21​1−(−21​)2​
1−(−21​)2​=23​​
1−(−21​)2​
(−21​)2=41​
(−21​)2
Apply exponent rule: (−a)n=an,if n is even(−21​)2=(21​)2=(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=3​21​⋅23​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=2⋅21⋅3​3​​
1⋅3​3​=3
1⋅3​3​
Apply radical rule: a​a​=a3​3​=3=1⋅3
Multiply the numbers: 1⋅3=3=3
=2⋅23​
Multiply the numbers: 2⋅2=4=43​
=−41​−43​
Apply rule ca​±cb​=ca±b​=4−1−3​
Subtract the numbers: −1−3=−4=4−4​
Apply the fraction rule: b−a​=−ba​=−44​
Apply rule aa​=1=−1
−1=1
False
The solution isx=21​
x=21​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arcsin(x)+arcsin(3​x)=2π​
Remove the ones that don't agree with the equation.
Check the solution 21​:True
21​
Plug in n=121​
For arcsin(x)+arcsin(3​x)=2π​plug inx=21​arcsin(21​)+arcsin(3​21​)=2π​
Refine1.57079…=1.57079…
⇒True
x=21​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)sin(x)= 1/2(cos(x)-3)(cos(x)+1)=04tan^2(x)-16tan(x)+7=01-cos(x)=0.5arctan(100x)-arctan(x)=45

Frequently Asked Questions (FAQ)

  • What is the general solution for arcsin(x)+arcsin(sqrt(3)x)= pi/2 ?

    The general solution for arcsin(x)+arcsin(sqrt(3)x)= pi/2 is x= 1/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024