Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(θ)+3csc(θ)=5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(θ)+3csc(θ)=5

Solution

θ=0.82641…+2πn,θ=2.70997…+2πn
+1
Degrees
θ=47.34982…∘+360∘n,θ=155.27003…∘+360∘n
Solution steps
cot(θ)+3csc(θ)=5
Subtract 5 from both sidescot(θ)+3csc(θ)−5=0
Express with sin, cossin(θ)cos(θ)​+3⋅sin(θ)1​−5=0
Simplify sin(θ)cos(θ)​+3⋅sin(θ)1​−5:sin(θ)cos(θ)+3−5sin(θ)​
sin(θ)cos(θ)​+3⋅sin(θ)1​−5
3⋅sin(θ)1​=sin(θ)3​
3⋅sin(θ)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(θ)1⋅3​
Multiply the numbers: 1⋅3=3=sin(θ)3​
=sin(θ)cos(θ)​+sin(θ)3​−5
Combine the fractions sin(θ)cos(θ)​+sin(θ)3​:sin(θ)cos(θ)+3​
Apply rule ca​±cb​=ca±b​=sin(θ)cos(θ)+3​
=sin(θ)cos(θ)+3​−5
Convert element to fraction: 5=sin(θ)5sin(θ)​=sin(θ)cos(θ)+3​−sin(θ)5sin(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(θ)cos(θ)+3−5sin(θ)​
sin(θ)cos(θ)+3−5sin(θ)​=0
g(x)f(x)​=0⇒f(x)=0cos(θ)+3−5sin(θ)=0
Add 5sin(θ) to both sidescos(θ)+3=5sin(θ)
Square both sides(cos(θ)+3)2=(5sin(θ))2
Subtract (5sin(θ))2 from both sides(cos(θ)+3)2−25sin2(θ)=0
Rewrite using trig identities
(3+cos(θ))2−25sin2(θ)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(3+cos(θ))2−25(1−cos2(θ))
Simplify (3+cos(θ))2−25(1−cos2(θ)):26cos2(θ)+6cos(θ)−16
(3+cos(θ))2−25(1−cos2(θ))
(3+cos(θ))2:9+6cos(θ)+cos2(θ)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=3,b=cos(θ)
=32+2⋅3cos(θ)+cos2(θ)
Simplify 32+2⋅3cos(θ)+cos2(θ):9+6cos(θ)+cos2(θ)
32+2⋅3cos(θ)+cos2(θ)
32=9=9+2⋅3cos(θ)+cos2(θ)
Multiply the numbers: 2⋅3=6=9+6cos(θ)+cos2(θ)
=9+6cos(θ)+cos2(θ)
=9+6cos(θ)+cos2(θ)−25(1−cos2(θ))
Expand −25(1−cos2(θ)):−25+25cos2(θ)
−25(1−cos2(θ))
Apply the distributive law: a(b−c)=ab−aca=−25,b=1,c=cos2(θ)=−25⋅1−(−25)cos2(θ)
Apply minus-plus rules−(−a)=a=−25⋅1+25cos2(θ)
Multiply the numbers: 25⋅1=25=−25+25cos2(θ)
=9+6cos(θ)+cos2(θ)−25+25cos2(θ)
Simplify 9+6cos(θ)+cos2(θ)−25+25cos2(θ):26cos2(θ)+6cos(θ)−16
9+6cos(θ)+cos2(θ)−25+25cos2(θ)
Group like terms=6cos(θ)+cos2(θ)+25cos2(θ)+9−25
Add similar elements: cos2(θ)+25cos2(θ)=26cos2(θ)=6cos(θ)+26cos2(θ)+9−25
Add/Subtract the numbers: 9−25=−16=26cos2(θ)+6cos(θ)−16
=26cos2(θ)+6cos(θ)−16
=26cos2(θ)+6cos(θ)−16
−16+26cos2(θ)+6cos(θ)=0
Solve by substitution
−16+26cos2(θ)+6cos(θ)=0
Let: cos(θ)=u−16+26u2+6u=0
−16+26u2+6u=0:u=26−3+517​​,u=−263+517​​
−16+26u2+6u=0
Write in the standard form ax2+bx+c=026u2+6u−16=0
Solve with the quadratic formula
26u2+6u−16=0
Quadratic Equation Formula:
For a=26,b=6,c=−16u1,2​=2⋅26−6±62−4⋅26(−16)​​
u1,2​=2⋅26−6±62−4⋅26(−16)​​
62−4⋅26(−16)​=1017​
62−4⋅26(−16)​
Apply rule −(−a)=a=62+4⋅26⋅16​
Multiply the numbers: 4⋅26⋅16=1664=62+1664​
62=36=36+1664​
Add the numbers: 36+1664=1700=1700​
Prime factorization of 1700:22⋅52⋅17
1700
1700divides by 21700=850⋅2=2⋅850
850divides by 2850=425⋅2=2⋅2⋅425
425divides by 5425=85⋅5=2⋅2⋅5⋅85
85divides by 585=17⋅5=2⋅2⋅5⋅5⋅17
2,5,17 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5⋅5⋅17
=22⋅52⋅17
=22⋅52⋅17​
Apply radical rule: =17​22​52​
Apply radical rule: 22​=2=217​52​
Apply radical rule: 52​=5=2⋅517​
Refine=1017​
u1,2​=2⋅26−6±1017​​
Separate the solutionsu1​=2⋅26−6+1017​​,u2​=2⋅26−6−1017​​
u=2⋅26−6+1017​​:26−3+517​​
2⋅26−6+1017​​
Multiply the numbers: 2⋅26=52=52−6+1017​​
Factor −6+1017​:2(−3+517​)
−6+1017​
Rewrite as=−2⋅3+2⋅517​
Factor out common term 2=2(−3+517​)
=522(−3+517​)​
Cancel the common factor: 2=26−3+517​​
u=2⋅26−6−1017​​:−263+517​​
2⋅26−6−1017​​
Multiply the numbers: 2⋅26=52=52−6−1017​​
Factor −6−1017​:−2(3+517​)
−6−1017​
Rewrite as=−2⋅3−2⋅517​
Factor out common term 2=−2(3+517​)
=−522(3+517​)​
Cancel the common factor: 2=−263+517​​
The solutions to the quadratic equation are:u=26−3+517​​,u=−263+517​​
Substitute back u=cos(θ)cos(θ)=26−3+517​​,cos(θ)=−263+517​​
cos(θ)=26−3+517​​,cos(θ)=−263+517​​
cos(θ)=26−3+517​​:θ=arccos(26−3+517​​)+2πn,θ=2π−arccos(26−3+517​​)+2πn
cos(θ)=26−3+517​​
Apply trig inverse properties
cos(θ)=26−3+517​​
General solutions for cos(θ)=26−3+517​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(26−3+517​​)+2πn,θ=2π−arccos(26−3+517​​)+2πn
θ=arccos(26−3+517​​)+2πn,θ=2π−arccos(26−3+517​​)+2πn
cos(θ)=−263+517​​:θ=arccos(−263+517​​)+2πn,θ=−arccos(−263+517​​)+2πn
cos(θ)=−263+517​​
Apply trig inverse properties
cos(θ)=−263+517​​
General solutions for cos(θ)=−263+517​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnθ=arccos(−263+517​​)+2πn,θ=−arccos(−263+517​​)+2πn
θ=arccos(−263+517​​)+2πn,θ=−arccos(−263+517​​)+2πn
Combine all the solutionsθ=arccos(26−3+517​​)+2πn,θ=2π−arccos(26−3+517​​)+2πn,θ=arccos(−263+517​​)+2πn,θ=−arccos(−263+517​​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into cot(θ)+3csc(θ)=5
Remove the ones that don't agree with the equation.
Check the solution arccos(26−3+517​​)+2πn:True
arccos(26−3+517​​)+2πn
Plug in n=1arccos(26−3+517​​)+2π1
For cot(θ)+3csc(θ)=5plug inθ=arccos(26−3+517​​)+2π1cot(arccos(26−3+517​​)+2π1)+3csc(arccos(26−3+517​​)+2π1)=5
Refine5=5
⇒True
Check the solution 2π−arccos(26−3+517​​)+2πn:False
2π−arccos(26−3+517​​)+2πn
Plug in n=12π−arccos(26−3+517​​)+2π1
For cot(θ)+3csc(θ)=5plug inθ=2π−arccos(26−3+517​​)+2π1cot(2π−arccos(26−3+517​​)+2π1)+3csc(2π−arccos(26−3+517​​)+2π1)=5
Refine−5=5
⇒False
Check the solution arccos(−263+517​​)+2πn:True
arccos(−263+517​​)+2πn
Plug in n=1arccos(−263+517​​)+2π1
For cot(θ)+3csc(θ)=5plug inθ=arccos(−263+517​​)+2π1cot(arccos(−263+517​​)+2π1)+3csc(arccos(−263+517​​)+2π1)=5
Refine5=5
⇒True
Check the solution −arccos(−263+517​​)+2πn:False
−arccos(−263+517​​)+2πn
Plug in n=1−arccos(−263+517​​)+2π1
For cot(θ)+3csc(θ)=5plug inθ=−arccos(−263+517​​)+2π1cot(−arccos(−263+517​​)+2π1)+3csc(−arccos(−263+517​​)+2π1)=5
Refine−5=5
⇒False
θ=arccos(26−3+517​​)+2πn,θ=arccos(−263+517​​)+2πn
Show solutions in decimal formθ=0.82641…+2πn,θ=2.70997…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(θ)-2sin^2(θ)=sqrt(3)1-|cos(x)|=0sin(θ)=-0.7891/2*cos(a)=094.5^2=60^2+50^2+6000cos(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for cot(θ)+3csc(θ)=5 ?

    The general solution for cot(θ)+3csc(θ)=5 is θ=0.82641…+2pin,θ=2.70997…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024