Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sec(x)+tan(x))/(cot(x)+cos(x))=sec^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(x)+cos(x)sec(x)+tan(x)​=sec2(x)

Solution

NoSolutionforx∈R
Solution steps
cot(x)+cos(x)sec(x)+tan(x)​=sec2(x)
Subtract sec2(x) from both sidescot(x)+cos(x)sec(x)+tan(x)​−sec2(x)=0
Simplify cot(x)+cos(x)sec(x)+tan(x)​−sec2(x):cot(x)+cos(x)sec(x)+tan(x)−sec2(x)(cot(x)+cos(x))​
cot(x)+cos(x)sec(x)+tan(x)​−sec2(x)
Convert element to fraction: sec2(x)=cot(x)+cos(x)sec2(x)(cot(x)+cos(x))​=cot(x)+cos(x)sec(x)+tan(x)​−cot(x)+cos(x)sec2(x)(cot(x)+cos(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cot(x)+cos(x)sec(x)+tan(x)−sec2(x)(cot(x)+cos(x))​
cot(x)+cos(x)sec(x)+tan(x)−sec2(x)(cot(x)+cos(x))​=0
g(x)f(x)​=0⇒f(x)=0sec(x)+tan(x)−sec2(x)(cot(x)+cos(x))=0
Express with sin, cos
sec(x)+tan(x)−(cos(x)+cot(x))sec2(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=cos(x)1​+tan(x)−(cos(x)+cot(x))(cos(x)1​)2
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x)1​+cos(x)sin(x)​−(cos(x)+cot(x))(cos(x)1​)2
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=cos(x)1​+cos(x)sin(x)​−(cos(x)+sin(x)cos(x)​)(cos(x)1​)2
Simplify cos(x)1​+cos(x)sin(x)​−(cos(x)+sin(x)cos(x)​)(cos(x)1​)2:cos(x)sin(x)sin2(x)−1​
cos(x)1​+cos(x)sin(x)​−(cos(x)+sin(x)cos(x)​)(cos(x)1​)2
Combine the fractions cos(x)1​+cos(x)sin(x)​:cos(x)1+sin(x)​
Apply rule ca​±cb​=ca±b​=cos(x)1+sin(x)​
=cos(x)sin(x)+1​−(cos(x)1​)2(sin(x)cos(x)​+cos(x))
(cos(x)+sin(x)cos(x)​)(cos(x)1​)2=sin(x)cos(x)sin(x)+1​
(cos(x)+sin(x)cos(x)​)(cos(x)1​)2
Join cos(x)+sin(x)cos(x)​:sin(x)cos(x)sin(x)+cos(x)​
cos(x)+sin(x)cos(x)​
Convert element to fraction: cos(x)=sin(x)cos(x)sin(x)​=sin(x)cos(x)sin(x)​+sin(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)cos(x)sin(x)+cos(x)​
=(cos(x)1​)2sin(x)cos(x)sin(x)+cos(x)​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)12​
Apply rule 1a=112=1=cos2(x)1​
=sin(x)cos(x)sin(x)+cos(x)​⋅cos2(x)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(x)cos2(x)(cos(x)sin(x)+cos(x))⋅1​
(cos(x)sin(x)+cos(x))⋅1=cos(x)sin(x)+cos(x)
(cos(x)sin(x)+cos(x))⋅1
Multiply: (cos(x)sin(x)+cos(x))⋅1=(cos(x)sin(x)+cos(x))=(cos(x)sin(x)+cos(x))
Remove parentheses: (a)=a=cos(x)sin(x)+cos(x)
=cos2(x)sin(x)cos(x)sin(x)+cos(x)​
Factor out common term cos(x)=sin(x)cos2(x)cos(x)(sin(x)+1)​
Cancel the common factor: cos(x)=sin(x)cos(x)sin(x)+1​
=cos(x)sin(x)+1​−sin(x)cos(x)sin(x)+1​
Least Common Multiplier of cos(x),sin(x)cos(x):cos(x)sin(x)
cos(x),sin(x)cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or sin(x)cos(x)=cos(x)sin(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(x)sin(x)
For cos(x)1+sin(x)​:multiply the denominator and numerator by sin(x)cos(x)1+sin(x)​=cos(x)sin(x)(1+sin(x))sin(x)​
=cos(x)sin(x)(1+sin(x))sin(x)​−cos(x)sin(x)sin(x)+1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)(1+sin(x))sin(x)−(sin(x)+1)​
Expand (1+sin(x))sin(x)−(sin(x)+1):sin2(x)−1
(1+sin(x))sin(x)−(sin(x)+1)
=sin(x)(1+sin(x))−(sin(x)+1)
Expand sin(x)(1+sin(x)):sin(x)+sin2(x)
sin(x)(1+sin(x))
Apply the distributive law: a(b+c)=ab+aca=sin(x),b=1,c=sin(x)=sin(x)⋅1+sin(x)sin(x)
=1⋅sin(x)+sin(x)sin(x)
Simplify 1⋅sin(x)+sin(x)sin(x):sin(x)+sin2(x)
1⋅sin(x)+sin(x)sin(x)
1⋅sin(x)=sin(x)
1⋅sin(x)
Multiply: 1⋅sin(x)=sin(x)=sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=sin(x)+sin2(x)
=sin(x)+sin2(x)
=sin(x)+sin2(x)−(sin(x)+1)
−(sin(x)+1):−sin(x)−1
−(sin(x)+1)
Distribute parentheses=−(sin(x))−(1)
Apply minus-plus rules+(−a)=−a=−sin(x)−1
=sin(x)+sin2(x)−sin(x)−1
Add similar elements: sin(x)−sin(x)=0=sin2(x)−1
=cos(x)sin(x)sin2(x)−1​
=cos(x)sin(x)sin2(x)−1​
cos(x)sin(x)−1+sin2(x)​=0
g(x)f(x)​=0⇒f(x)=0−1+sin2(x)=0
Solve by substitution
−1+sin2(x)=0
Let: sin(x)=u−1+u2=0
−1+u2=0:u=1,u=−1
−1+u2=0
Move 1to the right side
−1+u2=0
Add 1 to both sides−1+u2+1=0+1
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
Substitute back u=sin(x)sin(x)=1,sin(x)=−1
sin(x)=1,sin(x)=−1
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn
Since the equation is undefined for:2π​+2πn,23π​+2πnNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)=csc(x)1+cos(2t)=cos^2(t)2sin(2x+(3pi)/2)+1=02cos(2x)-sin(x)-1=02cos^2(θ)-2sin^2(θ)=sqrt(2)

Frequently Asked Questions (FAQ)

  • What is the general solution for (sec(x)+tan(x))/(cot(x)+cos(x))=sec^2(x) ?

    The general solution for (sec(x)+tan(x))/(cot(x)+cos(x))=sec^2(x) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024