Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x-20)=tan(2x+10)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x−20∘)=tan(2x+10)

Solution

x=−360∘n−20∘−10,x=−10−200∘−360∘n
+1
Radians
x=−9π​−10−2πn,x=−10−910π​−2πn
Solution steps
tan(x−20∘)=tan(2x+10)
Subtract tan(2x+10) from both sidestan(x−20∘)−tan(2x+10)=0
Express with sin, cos
tan(−20∘+x)−tan(10+2x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(−20∘+x)sin(−20∘+x)​−tan(10+2x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(−20∘+x)sin(−20∘+x)​−cos(10+2x)sin(10+2x)​
Simplify cos(−20∘+x)sin(−20∘+x)​−cos(10+2x)sin(10+2x)​:cos(99x−180∘​)cos(2x+10)sin(9−180∘+9x​)cos(2x+10)−sin(10+2x)cos(99x−180∘​)​
cos(−20∘+x)sin(−20∘+x)​−cos(10+2x)sin(10+2x)​
cos(−20∘+x)sin(−20∘+x)​=cos(9−180∘+9x​)sin(9−180∘+9x​)​
cos(−20∘+x)sin(−20∘+x)​
Join −20∘+x:9−180∘+9x​
−20∘+x
Convert element to fraction: x=9x9​=−20∘+9x⋅9​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9−180∘+x⋅9​
=cos(9−180∘+x⋅9​)sin(−20∘+x)​
Join −20∘+x:9−180∘+9x​
−20∘+x
Convert element to fraction: x=9x9​=−20∘+9x⋅9​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9−180∘+x⋅9​
=cos(9−180∘+x⋅9​)sin(9−180∘+x⋅9​)​
=cos(99x−180∘​)sin(99x−180∘​)​−cos(2x+10)sin(2x+10)​
Least Common Multiplier of cos(9−180∘+x9​),cos(10+2x):cos(99x−180∘​)cos(2x+10)
cos(9−180∘+x⋅9​),cos(10+2x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(9−180∘+x9​) or cos(10+2x)=cos(99x−180∘​)cos(2x+10)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(99x−180∘​)cos(2x+10)
For cos(9−180∘+x⋅9​)sin(9−180∘+x⋅9​)​:multiply the denominator and numerator by cos(2x+10)cos(9−180∘+x⋅9​)sin(9−180∘+x⋅9​)​=cos(9−180∘+x⋅9​)cos(2x+10)sin(9−180∘+x⋅9​)cos(2x+10)​
For cos(10+2x)sin(10+2x)​:multiply the denominator and numerator by cos(99x−180∘​)cos(10+2x)sin(10+2x)​=cos(10+2x)cos(99x−180∘​)sin(10+2x)cos(99x−180∘​)​
=cos(9−180∘+x⋅9​)cos(2x+10)sin(9−180∘+x⋅9​)cos(2x+10)​−cos(10+2x)cos(99x−180∘​)sin(10+2x)cos(99x−180∘​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(99x−180∘​)cos(2x+10)sin(9−180∘+x⋅9​)cos(2x+10)−sin(10+2x)cos(99x−180∘​)​
=cos(99x−180∘​)cos(2x+10)sin(9−180∘+9x​)cos(2x+10)−sin(10+2x)cos(99x−180∘​)​
cos(10+2x)cos(9−180∘+9x​)cos(10+2x)sin(9−180∘+9x​)−cos(9−180∘+9x​)sin(10+2x)​=0
g(x)f(x)​=0⇒f(x)=0cos(10+2x)sin(9−180∘+9x​)−cos(9−180∘+9x​)sin(10+2x)=0
Rewrite using trig identities
cos(10+2x)sin(9−180∘+9x​)−cos(9−180∘+9x​)sin(10+2x)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(9−180∘+9x​−(10+2x))
sin(9−180∘+9x​−(10+2x))=0
General solutions for sin(9−180∘+9x​−(10+2x))=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
9−180∘+9x​−(10+2x)=0+360∘n,9−180∘+9x​−(10+2x)=180∘+360∘n
9−180∘+9x​−(10+2x)=0+360∘n,9−180∘+9x​−(10+2x)=180∘+360∘n
Solve 9−180∘+9x​−(10+2x)=0+360∘n:x=−360∘n−20∘−10
9−180∘+9x​−(10+2x)=0+360∘n
0+360∘n=360∘n9−180∘+9x​−(10+2x)=360∘n
Multiply both sides by 9
9−180∘+9x​−(10+2x)=360∘n
Multiply both sides by 99−180∘+9x​⋅9−(10+2x)⋅9=360∘n⋅9
Simplify
9−180∘+9x​⋅9−(10+2x)⋅9=360∘n⋅9
Simplify 9−180∘+9x​⋅9:−180∘+9x
9−180∘+9x​⋅9
Multiply fractions: a⋅cb​=ca⋅b​=9(−180∘+9x)⋅9​
Cancel the common factor: 9=−−180∘+9x
Simplify (10+2x)⋅9:9(10+2x)
(10+2x)⋅9
Apply the commutative law: (10+2x)⋅9=9(10+2x)9(10+2x)
Simplify 360∘n⋅9:3240∘n
360∘n⋅9
Multiply the numbers: 2⋅9=18=3240∘n
−180∘+9x−9(10+2x)=3240∘n
−180∘+9x−9(10+2x)=3240∘n
−180∘+9x−9(10+2x)=3240∘n
Expand −180∘+9x−9(10+2x):−9x−180∘−90
−180∘+9x−9(10+2x)
Expand −9(10+2x):−90−18x
−9(10+2x)
Apply the distributive law: a(b+c)=ab+aca=−9,b=10,c=2x=−9⋅10+(−9)⋅2x
Apply minus-plus rules+(−a)=−a=−9⋅10−9⋅2x
Simplify −9⋅10−9⋅2x:−90−18x
−9⋅10−9⋅2x
Multiply the numbers: 9⋅10=90=−90−9⋅2x
Multiply the numbers: 9⋅2=18=−90−18x
=−90−18x
=−180∘+9x−90−18x
Simplify −180∘+9x−90−18x:−9x−180∘−90
−180∘+9x−90−18x
Group like terms=9x−18x−180∘−90
Add similar elements: 9x−18x=−9x=−9x−180∘−90
=−9x−180∘−90
−9x−180∘−90=3240∘n
Move 180∘to the right side
−9x−180∘−90=3240∘n
Add 180∘ to both sides−9x−180∘−90+180∘=3240∘n+180∘
Simplify−9x−90=3240∘n+180∘
−9x−90=3240∘n+180∘
Move 90to the right side
−9x−90=3240∘n+180∘
Add 90 to both sides−9x−90+90=3240∘n+180∘+90
Simplify−9x=3240∘n+180∘+90
−9x=3240∘n+180∘+90
Divide both sides by −9
−9x=3240∘n+180∘+90
Divide both sides by −9−9−9x​=−93240∘n​+−9180∘​+−990​
Simplify
−9−9x​=−93240∘n​+−9180∘​+−990​
Simplify −9−9x​:x
−9−9x​
Apply the fraction rule: −b−a​=ba​=99x​
Divide the numbers: 99​=1=x
Simplify −93240∘n​+−9180∘​+−990​:−360∘n−20∘−10
−93240∘n​+−9180∘​+−990​
−93240∘n​=−360∘n
−93240∘n​
Apply the fraction rule: −ba​=−ba​=−93240∘n​
Divide the numbers: 918​=2=−360∘n
=−360∘n+−9180∘​+−990​
Apply the fraction rule: −ba​=−ba​=−360∘n−20∘+−990​
−990​=−10
−990​
Apply the fraction rule: −ba​=−ba​=−990​
Divide the numbers: 990​=10=−10
=−360∘n−20∘−10
x=−360∘n−20∘−10
x=−360∘n−20∘−10
x=−360∘n−20∘−10
Solve 9−180∘+9x​−(10+2x)=180∘+360∘n:x=−10−200∘−360∘n
9−180∘+9x​−(10+2x)=180∘+360∘n
Multiply both sides by 9
9−180∘+9x​−(10+2x)=180∘+360∘n
Multiply both sides by 99−180∘+9x​⋅9−(10+2x)⋅9=180∘9+360∘n⋅9
Simplify
9−180∘+9x​⋅9−(10+2x)⋅9=180∘9+360∘n⋅9
Simplify 9−180∘+9x​⋅9:−180∘+9x
9−180∘+9x​⋅9
Multiply fractions: a⋅cb​=ca⋅b​=9(−180∘+9x)⋅9​
Cancel the common factor: 9=−−180∘+9x
Simplify (10+2x)⋅9:9(10+2x)
(10+2x)⋅9
Apply the commutative law: (10+2x)⋅9=9(10+2x)9(10+2x)
Simplify 180∘9:1620∘
180∘9
Apply the commutative law: 180∘9=1620∘1620∘
Simplify 360∘n⋅9:3240∘n
360∘n⋅9
Multiply the numbers: 2⋅9=18=3240∘n
−180∘+9x−9(10+2x)=1620∘+3240∘n
−180∘+9x−9(10+2x)=1620∘+3240∘n
−180∘+9x−9(10+2x)=1620∘+3240∘n
Expand −180∘+9x−9(10+2x):−9x−180∘−90
−180∘+9x−9(10+2x)
Expand −9(10+2x):−90−18x
−9(10+2x)
Apply the distributive law: a(b+c)=ab+aca=−9,b=10,c=2x=−9⋅10+(−9)⋅2x
Apply minus-plus rules+(−a)=−a=−9⋅10−9⋅2x
Simplify −9⋅10−9⋅2x:−90−18x
−9⋅10−9⋅2x
Multiply the numbers: 9⋅10=90=−90−9⋅2x
Multiply the numbers: 9⋅2=18=−90−18x
=−90−18x
=−180∘+9x−90−18x
Simplify −180∘+9x−90−18x:−9x−180∘−90
−180∘+9x−90−18x
Group like terms=9x−18x−180∘−90
Add similar elements: 9x−18x=−9x=−9x−180∘−90
=−9x−180∘−90
−9x−180∘−90=1620∘+3240∘n
Move 180∘to the right side
−9x−180∘−90=1620∘+3240∘n
Add 180∘ to both sides−9x−180∘−90+180∘=1620∘+3240∘n+180∘
Simplify−9x−90=1800∘+3240∘n
−9x−90=1800∘+3240∘n
Move 90to the right side
−9x−90=1800∘+3240∘n
Add 90 to both sides−9x−90+90=1800∘+3240∘n+90
Simplify−9x=1800∘+3240∘n+90
−9x=1800∘+3240∘n+90
Divide both sides by −9
−9x=1800∘+3240∘n+90
Divide both sides by −9−9−9x​=−91800∘​+−93240∘n​+−990​
Simplify
−9−9x​=−91800∘​+−93240∘n​+−990​
Simplify −9−9x​:x
−9−9x​
Apply the fraction rule: −b−a​=ba​=99x​
Divide the numbers: 99​=1=x
Simplify −91800∘​+−93240∘n​+−990​:−10−200∘−360∘n
−91800∘​+−93240∘n​+−990​
Group like terms=−990​+−91800∘​+−93240∘n​
−990​=−10
−990​
Apply the fraction rule: −ba​=−ba​=−990​
Divide the numbers: 990​=10=−10
=−10+−91800∘​+−93240∘n​
Apply the fraction rule: −ba​=−ba​=−10−200∘+−93240∘n​
−93240∘n​=−360∘n
−93240∘n​
Apply the fraction rule: −ba​=−ba​=−93240∘n​
Divide the numbers: 918​=2=−360∘n
=−10−200∘−360∘n
x=−10−200∘−360∘n
x=−10−200∘−360∘n
x=−10−200∘−360∘n
x=−360∘n−20∘−10,x=−10−200∘−360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(5x)cos(x)-cos(5x)sin(x)=02sin(3x+1)+1=22sin(3x+1)+1=1sin(x)=6946sin(2x)-(sqrt(3))/2 =0,-2pi<= x<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x-20)=tan(2x+10) ?

    The general solution for tan(x-20)=tan(2x+10) is x=-360n-20-10,x=-10-200-360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024