Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1-cos^2(a)=sin^2(2a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−cos2(a)=sin2(2a)

Solution

a=2πn,a=π+2πn,a=32π​+2πn,a=34π​+2πn,a=3π​+34πn​,a=π+34πn​
+1
Degrees
a=0∘+360∘n,a=180∘+360∘n,a=120∘+360∘n,a=240∘+360∘n,a=60∘+240∘n,a=180∘+240∘n
Solution steps
1−cos2(a)=sin2(2a)
Subtract sin2(2a) from both sides1−cos2(a)−sin2(2a)=0
Rewrite using trig identities
1−cos2(a)−sin2(2a)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−cos2(x)=sin2(x)=−sin2(2a)+sin2(a)
−sin2(2a)+sin2(a)=0
Factor −sin2(2a)+sin2(a):(sin(a)+sin(2a))(sin(a)−sin(2a))
−sin2(2a)+sin2(a)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(a)−sin2(2a)=(sin(a)+sin(2a))(sin(a)−sin(2a))=(sin(a)+sin(2a))(sin(a)−sin(2a))
(sin(a)+sin(2a))(sin(a)−sin(2a))=0
Solving each part separatelysin(a)+sin(2a)=0orsin(a)−sin(2a)=0
sin(a)+sin(2a)=0:a=2πn,a=π+2πn,a=32π​+2πn,a=34π​+2πn
sin(a)+sin(2a)=0
Rewrite using trig identities
sin(2a)+sin(a)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(a)cos(a)+sin(a)
sin(a)+2cos(a)sin(a)=0
Factor sin(a)+2cos(a)sin(a):sin(a)(2cos(a)+1)
sin(a)+2cos(a)sin(a)
Factor out common term sin(a)=sin(a)(1+2cos(a))
sin(a)(2cos(a)+1)=0
Solving each part separatelysin(a)=0or2cos(a)+1=0
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
General solutions for sin(a)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
Solve a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
2cos(a)+1=0:a=32π​+2πn,a=34π​+2πn
2cos(a)+1=0
Move 1to the right side
2cos(a)+1=0
Subtract 1 from both sides2cos(a)+1−1=0−1
Simplify2cos(a)=−1
2cos(a)=−1
Divide both sides by 2
2cos(a)=−1
Divide both sides by 222cos(a)​=2−1​
Simplifycos(a)=−21​
cos(a)=−21​
General solutions for cos(a)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
a=32π​+2πn,a=34π​+2πn
a=32π​+2πn,a=34π​+2πn
Combine all the solutionsa=2πn,a=π+2πn,a=32π​+2πn,a=34π​+2πn
sin(a)−sin(2a)=0:a=3π​+34πn​,a=π+34πn​,a=4πn,a=2π+4πn
sin(a)−sin(2a)=0
Rewrite using trig identities
−sin(2a)+sin(a)
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=2sin(2a−2a​)cos(2a+2a​)
Simplify 2sin(2a−2a​)cos(2a+2a​):−2cos(23a​)sin(2a​)
2sin(2a−2a​)cos(2a+2a​)
2a−2a​=−2a​
2a−2a​
Add similar elements: a−2a=−a=2−a​
Apply the fraction rule: b−a​=−ba​=−2a​
=2sin(−2a​)cos(2a+2a​)
Use the negative angle identity: sin(−x)=−sin(x)=2cos(2a+2a​)(−sin(2a​))
Remove parentheses: (−a)=−a=−2cos(2a+2a​)sin(2a​)
Add similar elements: a+2a=3a=−2cos(23a​)sin(2a​)
=−2cos(23a​)sin(2a​)
−2cos(23a​)sin(2a​)=0
Solving each part separatelycos(23a​)=0orsin(2a​)=0
cos(23a​)=0:a=3π​+34πn​,a=π+34πn​
cos(23a​)=0
General solutions for cos(23a​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
23a​=2π​+2πn,23a​=23π​+2πn
23a​=2π​+2πn,23a​=23π​+2πn
Solve 23a​=2π​+2πn:a=3π​+34πn​
23a​=2π​+2πn
Multiply both sides by 2
23a​=2π​+2πn
Multiply both sides by 222⋅3a​=2⋅2π​+2⋅2πn
Simplify
22⋅3a​=2⋅2π​+2⋅2πn
Simplify 22⋅3a​:3a
22⋅3a​
Multiply the numbers: 2⋅3=6=26a​
Divide the numbers: 26​=3=3a
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
3a=π+4πn
3a=π+4πn
3a=π+4πn
Divide both sides by 3
3a=π+4πn
Divide both sides by 333a​=3π​+34πn​
Simplifya=3π​+34πn​
a=3π​+34πn​
Solve 23a​=23π​+2πn:a=π+34πn​
23a​=23π​+2πn
Multiply both sides by 2
23a​=23π​+2πn
Multiply both sides by 222⋅3a​=2⋅23π​+2⋅2πn
Simplify
22⋅3a​=2⋅23π​+2⋅2πn
Simplify 22⋅3a​:3a
22⋅3a​
Multiply the numbers: 2⋅3=6=26a​
Divide the numbers: 26​=3=3a
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
3a=3π+4πn
3a=3π+4πn
3a=3π+4πn
Divide both sides by 3
3a=3π+4πn
Divide both sides by 333a​=33π​+34πn​
Simplifya=π+34πn​
a=π+34πn​
a=3π​+34πn​,a=π+34πn​
sin(2a​)=0:a=4πn,a=2π+4πn
sin(2a​)=0
General solutions for sin(2a​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2a​=0+2πn,2a​=π+2πn
2a​=0+2πn,2a​=π+2πn
Solve 2a​=0+2πn:a=4πn
2a​=0+2πn
0+2πn=2πn2a​=2πn
Multiply both sides by 2
2a​=2πn
Multiply both sides by 222a​=2⋅2πn
Simplifya=4πn
a=4πn
Solve 2a​=π+2πn:a=2π+4πn
2a​=π+2πn
Multiply both sides by 2
2a​=π+2πn
Multiply both sides by 222a​=2π+2⋅2πn
Simplifya=2π+4πn
a=2π+4πn
a=4πn,a=2π+4πn
Combine all the solutionsa=3π​+34πn​,a=π+34πn​,a=4πn,a=2π+4πn
Combine all the solutionsa=2πn,a=π+2πn,a=32π​+2πn,a=34π​+2πn,a=3π​+34πn​,a=π+34πn​,a=4πn,a=2π+4πn
Merge Overlapping Intervalsa=2πn,a=π+2πn,a=32π​+2πn,a=34π​+2πn,a=3π​+34πn​,a=π+34πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4cos(2x)=-2sin(x)tan^2(θ)+2tan(θ)=0,tan(2θ)+2tan(θ)=02cot(x)csc(x)-csc^2(x)=08tan(a)+3=2tan(a)+3tan(θ/2)=(sqrt(3))/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024