Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cosh(x)= 3/(sqrt(8))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cosh(x)=8​3​

Solution

x=21​ln(2),x=−21​ln(2)
+1
Degrees
x=19.85720…∘,x=−19.85720…∘
Solution steps
cosh(x)=8​3​
Rewrite using trig identities
cosh(x)=8​3​
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2ex+e−x​=8​3​
2ex+e−x​=8​3​
2ex+e−x​=8​3​:x=21​ln(2),x=−21​ln(2)
2ex+e−x​=8​3​
Apply exponent rules
2ex+e−x​=8​3​
Apply exponent rule: ab1​=a−b8​1​=8−21​2ex+e−x​=3⋅8−21​
2ex+e−x​=3⋅8−21​
Multiply both sides by 22ex+e−x​⋅2=3⋅8−21​⋅2
Simplify 3⋅8−21​⋅2:2​3​
3⋅8−21​⋅2
8−21​=22​1​
8−21​
Apply exponent rule: a−b=ab1​=8​1​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​1​
=3⋅2⋅22​1​
Multiply fractions: a⋅cb​=ca⋅b​=22​1⋅3⋅2​
Cancel the common factor: 2=2​1⋅3​
Multiply the numbers: 1⋅3=3=2​3​
ex+e−x=2​3​
Apply exponent rules
ex+e−x=2​3​
Apply exponent rule: abc=(ab)ce−x=(ex)−1ex+(ex)−1=2​3​
ex+(ex)−1=2​3​
Rewrite the equation with ex=uu+(u)−1=2​3​
Solve u+u−1=2​3​:u=2​,u=2​1​
u+u−1=2​3​
Refineu+u1​=2​3​
Multiply by LCM
u+u1​=2​3​
Find Least Common Multiplier of u,2​:2​u
u,2​
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u or 2​=2​u
Multiply by LCM=2​uu2​u+u1​2​u=2​3​2​u
Simplify
u2​u+u1​2​u=2​3​2​u
Simplify u2​u:2​u2
u2​u
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2​u1+1
Add the numbers: 1+1=2=2​u2
Simplify u1​2​u:2​
u1​2​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅2​u​
Cancel the common factor: u=1⋅2​
Multiply: 1⋅2​=2​=2​
Simplify 2​3​2​u:3u
2​3​2​u
Multiply fractions: a⋅cb​=ca⋅b​=2​32​​u
Cancel the common factor: 2​=u⋅3
2​u2+2​=3u
2​u2+2​=3u
2​u2+2​=3u
Solve 2​u2+2​=3u:u=2​,u=2​1​
2​u2+2​=3u
Move 3uto the left side
2​u2+2​=3u
Subtract 3u from both sides2​u2+2​−3u=3u−3u
Simplify2​u2+2​−3u=0
2​u2+2​−3u=0
Write in the standard form ax2+bx+c=02​u2−3u+2​=0
Solve with the quadratic formula
2​u2−3u+2​=0
Quadratic Equation Formula:
For a=2​,b=−3,c=2​u1,2​=22​−(−3)±(−3)2−42​2​​​
u1,2​=22​−(−3)±(−3)2−42​2​​​
(−3)2−42​2​​=1
(−3)2−42​2​​
(−3)2=32
(−3)2
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32
42​2​=8
42​2​
Apply radical rule: a​a​=a2​2​=2=4⋅2
Multiply the numbers: 4⋅2=8=8
=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
u1,2​=22​−(−3)±1​
Separate the solutionsu1​=22​−(−3)+1​,u2​=22​−(−3)−1​
u=22​−(−3)+1​:2​
22​−(−3)+1​
Apply rule −(−a)=a=22​3+1​
Add the numbers: 3+1=4=22​4​
Divide the numbers: 24​=2=2​2​
Apply radical rule: 2​=221​=221​2​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=21−21​
Subtract the numbers: 1−21​=21​=221​
Apply radical rule: 221​=2​=2​
u=22​−(−3)−1​:2​1​
22​−(−3)−1​
Apply rule −(−a)=a=22​3−1​
Subtract the numbers: 3−1=2=22​2​
Divide the numbers: 22​=1=2​1​
The solutions to the quadratic equation are:u=2​,u=2​1​
u=2​,u=2​1​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u+u−1 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2​,u=2​1​
u=2​,u=2​1​
Substitute back u=ex,solve for x
Solve ex=2​:x=21​ln(2)
ex=2​
Apply exponent rules
ex=2​
Apply exponent rule: a​=a21​2​=221​ex=221​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(221​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(221​)
Apply log rule: ln(xa)=a⋅ln(x)ln(221​)=21​ln(2)x=21​ln(2)
x=21​ln(2)
Solve ex=2​1​:x=−21​ln(2)
ex=2​1​
Apply exponent rules
ex=2​1​
Apply exponent rule: ab1​=a−b2​1​=2−21​ex=2−21​
Apply exponent rule: 2−21​=2−21​ex=2−21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(2−21​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(2−21​)
Apply log rule: ln(xa)=a⋅ln(x)ln(2−21​)=−21​ln(2)x=−21​ln(2)
x=−21​ln(2)
x=21​ln(2),x=−21​ln(2)
x=21​ln(2),x=−21​ln(2)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)= 11/61-1=sec(x)tan(x)= 59/36sqrt(3)csc(θ)+2=0,0<= θ<= 2pi2cos^2(x)-cos(x)=3

Frequently Asked Questions (FAQ)

  • What is the general solution for cosh(x)= 3/(sqrt(8)) ?

    The general solution for cosh(x)= 3/(sqrt(8)) is x= 1/2 ln(2),x=-1/2 ln(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024