Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(2x)-2sin^2(x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(2x)−2sin2(x)−1=0

Solution

x=πn
+1
Degrees
x=0∘+180∘n
Solution steps
cos2(2x)−2sin2(x)−1=0
Rewrite using trig identities
−1+cos2(2x)−2sin2(x)
Use the Double Angle identity: 1−2sin2(x)=cos(2x)−2sin2(x)=cos(2x)−1=−1+cos2(2x)+cos(2x)−1
Simplify −1+cos2(2x)+cos(2x)−1:cos2(2x)+cos(2x)−2
−1+cos2(2x)+cos(2x)−1
Group like terms=cos2(2x)+cos(2x)−1−1
Subtract the numbers: −1−1=−2=cos2(2x)+cos(2x)−2
=cos2(2x)+cos(2x)−2
−2+cos(2x)+cos2(2x)=0
Solve by substitution
−2+cos(2x)+cos2(2x)=0
Let: cos(2x)=u−2+u+u2=0
−2+u+u2=0:u=1,u=−2
−2+u+u2=0
Write in the standard form ax2+bx+c=0u2+u−2=0
Solve with the quadratic formula
u2+u−2=0
Quadratic Equation Formula:
For a=1,b=1,c=−2u1,2​=2⋅1−1±12−4⋅1⋅(−2)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−2)​​
12−4⋅1⋅(−2)​=3
12−4⋅1⋅(−2)​
Apply rule 1a=112=1=1−4⋅1⋅(−2)​
Apply rule −(−a)=a=1+4⋅1⋅2​
Multiply the numbers: 4⋅1⋅2=8=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2⋅1−1±3​
Separate the solutionsu1​=2⋅1−1+3​,u2​=2⋅1−1−3​
u=2⋅1−1+3​:1
2⋅1−1+3​
Add/Subtract the numbers: −1+3=2=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
u=2⋅1−1−3​:−2
2⋅1−1−3​
Subtract the numbers: −1−3=−4=2⋅1−4​
Multiply the numbers: 2⋅1=2=2−4​
Apply the fraction rule: b−a​=−ba​=−24​
Divide the numbers: 24​=2=−2
The solutions to the quadratic equation are:u=1,u=−2
Substitute back u=cos(2x)cos(2x)=1,cos(2x)=−2
cos(2x)=1,cos(2x)=−2
cos(2x)=1:x=πn
cos(2x)=1
General solutions for cos(2x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x=0+2πn
2x=0+2πn
Solve 2x=0+2πn:x=πn
2x=0+2πn
0+2πn=2πn2x=2πn
Divide both sides by 2
2x=2πn
Divide both sides by 222x​=22πn​
Simplifyx=πn
x=πn
x=πn
cos(2x)=−2:No Solution
cos(2x)=−2
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)+2=sin(x)-sin(2x)-3cos(x)=0solvefor x,y=3cos(fxx+pi/2)+5sin(x)cos(x)=sin(x),0<x<= 2picos^5(x)-sin(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^2(2x)-2sin^2(x)-1=0 ?

    The general solution for cos^2(2x)-2sin^2(x)-1=0 is x=pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024