Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^5(x)-sin(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos5(x)−sin(x)=0

Solution

x=0.51794…+2πn,x=−2.62364…+2πn
+1
Degrees
x=29.67623…∘+360∘n,x=−150.32376…∘+360∘n
Solution steps
cos5(x)−sin(x)=0
Add sin(x) to both sidescos5(x)=sin(x)
Square both sides(cos5(x))2=sin2(x)
Subtract sin2(x) from both sidescos10(x)−sin2(x)=0
Rewrite using trig identities
cos10(x)−sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=cos10(x)−(1−cos2(x))
−(1−cos2(x)):−1+cos2(x)
−(1−cos2(x))
Distribute parentheses=−(1)−(−cos2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+cos2(x)
=cos10(x)−1+cos2(x)
−1+cos10(x)+cos2(x)=0
Solve by substitution
−1+cos10(x)+cos2(x)=0
Let: cos(x)=u−1+u10+u2=0
−1+u10+u2=0:u=0.75487…​,u=−0.75487…​
−1+u10+u2=0
Write in the standard form an​xn+…+a1​x+a0​=0u10+u2−1=0
Rewrite the equation with v=u2 and v5=u10v5+v−1=0
Solve v5+v−1=0:v≈0.75487…
v5+v−1=0
Find one solution for v5+v−1=0 using Newton-Raphson:v≈0.75487…
v5+v−1=0
Newton-Raphson Approximation Definition
f(v)=v5+v−1
Find f′(v):5v4+1
dvd​(v5+v−1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v5)+dvdv​−dvd​(1)
dvd​(v5)=5v4
dvd​(v5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=5v5−1
Simplify=5v4
dvdv​=1
dvdv​
Apply the common derivative: dvdv​=1=1
dvd​(1)=0
dvd​(1)
Derivative of a constant: dxd​(a)=0=0
=5v4+1−0
Simplify=5v4+1
Let v0​=1Compute vn+1​ until Δvn+1​<0.000001
v1​=0.83333…:Δv1​=0.16666…
f(v0​)=15+1−1=1f′(v0​)=5⋅14+1=6v1​=0.83333…
Δv1​=∣0.83333…−1∣=0.16666…Δv1​=0.16666…
v2​=0.76438…:Δv2​=0.06895…
f(v1​)=0.83333…5+0.83333…−1=0.23521…f′(v1​)=5⋅0.83333…4+1=3.41126…v2​=0.76438…
Δv2​=∣0.76438…−0.83333…∣=0.06895…Δv2​=0.06895…
v3​=0.75502…:Δv3​=0.00935…
f(v2​)=0.76438…5+0.76438…−1=0.02532…f′(v2​)=5⋅0.76438…4+1=2.70691…v3​=0.75502…
Δv3​=∣0.75502…−0.76438…∣=0.00935…Δv3​=0.00935…
v4​=0.75487…:Δv4​=0.00014…
f(v3​)=0.75502…5+0.75502…−1=0.00038…f′(v3​)=5⋅0.75502…4+1=2.62485…v4​=0.75487…
Δv4​=∣0.75487…−0.75502…∣=0.00014…Δv4​=0.00014…
v5​=0.75487…:Δv5​=3.55234E−8
f(v4​)=0.75487…5+0.75487…−1=9.31989E−8f′(v4​)=5⋅0.75487…4+1=2.62359…v5​=0.75487…
Δv5​=∣0.75487…−0.75487…∣=3.55234E−8Δv5​=3.55234E−8
v≈0.75487…
Apply long division:v−0.75487…v5+v−1​=v4+0.75487…v3+0.56984…v2+0.43015…v+1.32471…
v4+0.75487…v3+0.56984…v2+0.43015…v+1.32471…≈0
Find one solution for v4+0.75487…v3+0.56984…v2+0.43015…v+1.32471…=0 using Newton-Raphson:No Solution for v∈R
v4+0.75487…v3+0.56984…v2+0.43015…v+1.32471…=0
Newton-Raphson Approximation Definition
f(v)=v4+0.75487…v3+0.56984…v2+0.43015…v+1.32471…
Find f′(v):4v3+2.26463…v2+1.13968…v+0.43015…
dvd​(v4+0.75487…v3+0.56984…v2+0.43015…v+1.32471…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v4)+dvd​(0.75487…v3)+dvd​(0.56984…v2)+dvd​(0.43015…v)+dvd​(1.32471…)
dvd​(v4)=4v3
dvd​(v4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4v4−1
Simplify=4v3
dvd​(0.75487…v3)=2.26463…v2
dvd​(0.75487…v3)
Take the constant out: (a⋅f)′=a⋅f′=0.75487…dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.75487…⋅3v3−1
Simplify=2.26463…v2
dvd​(0.56984…v2)=1.13968…v
dvd​(0.56984…v2)
Take the constant out: (a⋅f)′=a⋅f′=0.56984…dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.56984…⋅2v2−1
Simplify=1.13968…v
dvd​(0.43015…v)=0.43015…
dvd​(0.43015…v)
Take the constant out: (a⋅f)′=a⋅f′=0.43015…dvdv​
Apply the common derivative: dvdv​=1=0.43015…⋅1
Simplify=0.43015…
dvd​(1.32471…)=0
dvd​(1.32471…)
Derivative of a constant: dxd​(a)=0=0
=4v3+2.26463…v2+1.13968…v+0.43015…+0
Simplify=4v3+2.26463…v2+1.13968…v+0.43015…
Let v0​=−3Compute vn+1​ until Δvn+1​<0.000001
v1​=−2.27399…:Δv1​=0.72600…
f(v0​)=(−3)4+0.75487…(−3)3+0.56984…(−3)2+0.43015…(−3)+1.32471…=65.78110…f′(v0​)=4(−3)3+2.26463…(−3)2+1.13968…(−3)+0.43015…=−90.60718…v1​=−2.27399…
Δv1​=∣−2.27399…−(−3)∣=0.72600…Δv1​=0.72600…
v2​=−1.70962…:Δv2​=0.56437…
f(v1​)=(−2.27399…)4+0.75487…(−2.27399…)3+0.56984…(−2.27399…)2+0.43015…(−2.27399…)+1.32471…=21.15650…f′(v1​)=4(−2.27399…)3+2.26463…(−2.27399…)2+1.13968…(−2.27399…)+0.43015…=−37.48682…v2​=−1.70962…
Δv2​=∣−1.70962…−(−2.27399…)∣=0.56437…Δv2​=0.56437…
v3​=−1.23768…:Δv3​=0.47193…
f(v2​)=(−1.70962…)4+0.75487…(−1.70962…)3+0.56984…(−1.70962…)2+0.43015…(−1.70962…)+1.32471…=7.02564…f′(v2​)=4(−1.70962…)3+2.26463…(−1.70962…)2+1.13968…(−1.70962…)+0.43015…=−14.88684…v3​=−1.23768…
Δv3​=∣−1.23768…−(−1.70962…)∣=0.47193…Δv3​=0.47193…
v4​=−0.73120…:Δv4​=0.50648…
f(v3​)=(−1.23768…)4+0.75487…(−1.23768…)3+0.56984…(−1.23768…)2+0.43015…(−1.23768…)+1.32471…=2.58063…f′(v3​)=4(−1.23768…)3+2.26463…(−1.23768…)2+1.13968…(−1.23768…)+0.43015…=−5.09520…v4​=−0.73120…
Δv4​=∣−0.73120…−(−1.23768…)∣=0.50648…Δv4​=0.50648…
v5​=0.99541…:Δv5​=1.72662…
f(v4​)=(−0.73120…)4+0.75487…(−0.73120…)3+0.56984…(−0.73120…)2+0.43015…(−0.73120…)+1.32471…=1.30559…f′(v4​)=4(−0.73120…)3+2.26463…(−0.73120…)2+1.13968…(−0.73120…)+0.43015…=−0.75615…v5​=0.99541…
Δv5​=∣0.99541…−(−0.73120…)∣=1.72662…Δv5​=1.72662…
v6​=0.47388…:Δv6​=0.52153…
f(v5​)=0.99541…4+0.75487…⋅0.99541…3+0.56984…⋅0.99541…2+0.43015…⋅0.99541…+1.32471…=4.04387…f′(v5​)=4⋅0.99541…3+2.26463…⋅0.99541…2+1.13968…⋅0.99541…+0.43015…=7.75380…v6​=0.47388…
Δv6​=∣0.47388…−0.99541…∣=0.52153…Δv6​=0.52153…
v7​=−0.46459…:Δv7​=0.93847…
f(v6​)=0.47388…4+0.75487…⋅0.47388…3+0.56984…⋅0.47388…2+0.43015…⋅0.47388…+1.32471…=1.78729…f′(v6​)=4⋅0.47388…3+2.26463…⋅0.47388…2+1.13968…⋅0.47388…+0.43015…=1.90446…v7​=−0.46459…
Δv7​=∣−0.46459…−0.47388…∣=0.93847…Δv7​=0.93847…
v8​=104.25021…:Δv8​=104.71480…
f(v7​)=(−0.46459…)4+0.75487…(−0.46459…)3+0.56984…(−0.46459…)2+0.43015…(−0.46459…)+1.32471…=1.21875…f′(v7​)=4(−0.46459…)3+2.26463…(−0.46459…)2+1.13968…(−0.46459…)+0.43015…=−0.01163…v8​=104.25021…
Δv8​=∣104.25021…−(−0.46459…)∣=104.71480…Δv8​=104.71480…
Cannot find solution
The solution isv≈0.75487…
v≈0.75487…
Substitute back v=u2,solve for u
Solve u2=0.75487…:u=0.75487…​,u=−0.75487…​
u2=0.75487…
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=0.75487…​,u=−0.75487…​
The solutions are
u=0.75487…​,u=−0.75487…​
Substitute back u=cos(x)cos(x)=0.75487…​,cos(x)=−0.75487…​
cos(x)=0.75487…​,cos(x)=−0.75487…​
cos(x)=0.75487…​:x=arccos(0.75487…​)+2πn,x=2π−arccos(0.75487…​)+2πn
cos(x)=0.75487…​
Apply trig inverse properties
cos(x)=0.75487…​
General solutions for cos(x)=0.75487…​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.75487…​)+2πn,x=2π−arccos(0.75487…​)+2πn
x=arccos(0.75487…​)+2πn,x=2π−arccos(0.75487…​)+2πn
cos(x)=−0.75487…​:x=arccos(−0.75487…​)+2πn,x=−arccos(−0.75487…​)+2πn
cos(x)=−0.75487…​
Apply trig inverse properties
cos(x)=−0.75487…​
General solutions for cos(x)=−0.75487…​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.75487…​)+2πn,x=−arccos(−0.75487…​)+2πn
x=arccos(−0.75487…​)+2πn,x=−arccos(−0.75487…​)+2πn
Combine all the solutionsx=arccos(0.75487…​)+2πn,x=2π−arccos(0.75487…​)+2πn,x=arccos(−0.75487…​)+2πn,x=−arccos(−0.75487…​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into cos5(x)−sin(x)=0
Remove the ones that don't agree with the equation.
Check the solution arccos(0.75487…​)+2πn:True
arccos(0.75487…​)+2πn
Plug in n=1arccos(0.75487…​)+2π1
For cos5(x)−sin(x)=0plug inx=arccos(0.75487…​)+2π1cos5(arccos(0.75487…​)+2π1)−sin(arccos(0.75487…​)+2π1)=0
Refine0=0
⇒True
Check the solution 2π−arccos(0.75487…​)+2πn:False
2π−arccos(0.75487…​)+2πn
Plug in n=12π−arccos(0.75487…​)+2π1
For cos5(x)−sin(x)=0plug inx=2π−arccos(0.75487…​)+2π1cos5(2π−arccos(0.75487…​)+2π1)−sin(2π−arccos(0.75487…​)+2π1)=0
Refine0.99019…=0
⇒False
Check the solution arccos(−0.75487…​)+2πn:False
arccos(−0.75487…​)+2πn
Plug in n=1arccos(−0.75487…​)+2π1
For cos5(x)−sin(x)=0plug inx=arccos(−0.75487…​)+2π1cos5(arccos(−0.75487…​)+2π1)−sin(arccos(−0.75487…​)+2π1)=0
Refine−0.99019…=0
⇒False
Check the solution −arccos(−0.75487…​)+2πn:True
−arccos(−0.75487…​)+2πn
Plug in n=1−arccos(−0.75487…​)+2π1
For cos5(x)−sin(x)=0plug inx=−arccos(−0.75487…​)+2π1cos5(−arccos(−0.75487…​)+2π1)−sin(−arccos(−0.75487…​)+2π1)=0
Refine0=0
⇒True
x=arccos(0.75487…​)+2πn,x=−arccos(−0.75487…​)+2πn
Show solutions in decimal formx=0.51794…+2πn,x=−2.62364…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,y= 1/(5sin(2x))cos(θ)= 3/(sqrt(35))csc^2(θ)-3csc(θ)+2=0sin(3x)=sqrt(2)4*cos(x)+5=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^5(x)-sin(x)=0 ?

    The general solution for cos^5(x)-sin(x)=0 is x=0.51794…+2pin,x=-2.62364…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024