Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(θ)+3sin(θ/2)-2=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(θ)+3sin(2θ​)−2=0

Solution

θ=3π​+4πn,θ=35π​+4πn,θ=π+4πn
+1
Degrees
θ=60∘+720∘n,θ=300∘+720∘n,θ=180∘+720∘n
Solution steps
cos(θ)+3sin(2θ​)−2=0
Let: u=2θ​cos(2u)+3sin(u)−2=0
Rewrite using trig identities
−2+cos(2u)+3sin(u)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=−2+1−2sin2(u)+3sin(u)
Simplify=3sin(u)−2sin2(u)−1
−1−2sin2(u)+3sin(u)=0
Solve by substitution
−1−2sin2(u)+3sin(u)=0
Let: sin(u)=u−1−2u2+3u=0
−1−2u2+3u=0:u=21​,u=1
−1−2u2+3u=0
Write in the standard form ax2+bx+c=0−2u2+3u−1=0
Solve with the quadratic formula
−2u2+3u−1=0
Quadratic Equation Formula:
For a=−2,b=3,c=−1u1,2​=2(−2)−3±32−4(−2)(−1)​​
u1,2​=2(−2)−3±32−4(−2)(−1)​​
32−4(−2)(−1)​=1
32−4(−2)(−1)​
Apply rule −(−a)=a=32−4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
u1,2​=2(−2)−3±1​
Separate the solutionsu1​=2(−2)−3+1​,u2​=2(−2)−3−1​
u=2(−2)−3+1​:21​
2(−2)−3+1​
Remove parentheses: (−a)=−a=−2⋅2−3+1​
Add/Subtract the numbers: −3+1=−2=−2⋅2−2​
Multiply the numbers: 2⋅2=4=−4−2​
Apply the fraction rule: −b−a​=ba​=42​
Cancel the common factor: 2=21​
u=2(−2)−3−1​:1
2(−2)−3−1​
Remove parentheses: (−a)=−a=−2⋅2−3−1​
Subtract the numbers: −3−1=−4=−2⋅2−4​
Multiply the numbers: 2⋅2=4=−4−4​
Apply the fraction rule: −b−a​=ba​=44​
Apply rule aa​=1=1
The solutions to the quadratic equation are:u=21​,u=1
Substitute back u=sin(u)sin(u)=21​,sin(u)=1
sin(u)=21​,sin(u)=1
sin(u)=21​:u=6π​+2πn,u=65π​+2πn
sin(u)=21​
General solutions for sin(u)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=6π​+2πn,u=65π​+2πn
u=6π​+2πn,u=65π​+2πn
sin(u)=1:u=2π​+2πn
sin(u)=1
General solutions for sin(u)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=2π​+2πn
u=2π​+2πn
Combine all the solutionsu=6π​+2πn,u=65π​+2πn,u=2π​+2πn
Substitute back u=2θ​
2θ​=6π​+2πn:θ=3π​+4πn
2θ​=6π​+2πn
Multiply both sides by 2
2θ​=6π​+2πn
Multiply both sides by 222θ​=2⋅6π​+2⋅2πn
Simplify
22θ​=2⋅6π​+2⋅2πn
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅6π​+2⋅2πn:3π​+4πn
2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π​+4πn
θ=3π​+4πn
θ=3π​+4πn
θ=3π​+4πn
2θ​=65π​+2πn:θ=35π​+4πn
2θ​=65π​+2πn
Multiply both sides by 2
2θ​=65π​+2πn
Multiply both sides by 222θ​=2⋅65π​+2⋅2πn
Simplify
22θ​=2⋅65π​+2⋅2πn
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅65π​+2⋅2πn:35π​+4πn
2⋅65π​+2⋅2πn
2⋅65π​=35π​
2⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π2​
Multiply the numbers: 5⋅2=10=610π​
Cancel the common factor: 2=35π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=35π​+4πn
θ=35π​+4πn
θ=35π​+4πn
θ=35π​+4πn
2θ​=2π​+2πn:θ=π+4πn
2θ​=2π​+2πn
Multiply both sides by 2
2θ​=2π​+2πn
Multiply both sides by 222θ​=2⋅2π​+2⋅2πn
Simplify
22θ​=2⋅2π​+2⋅2πn
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
θ=π+4πn
θ=π+4πn
θ=π+4πn
θ=3π​+4πn,θ=35π​+4πn,θ=π+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sec(θ)=6sin(2x+20)-1=(-1)/2solvefor x,sin(x+pi/2)-cos^2(x)=00=4+3cos(θ)cos(θ)= 6/8

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(θ)+3sin(θ/2)-2=0 ?

    The general solution for cos(θ)+3sin(θ/2)-2=0 is θ= pi/3+4pin,θ=(5pi)/3+4pin,θ=pi+4pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024