Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc^3(x)-4csc(x)=3cot^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc3(x)−4csc(x)=3cot2(x)

Solution

x=−0.79731…+2πn,x=π+0.79731…+2πn,x=0.26356…+2πn,x=π−0.26356…+2πn
+1
Degrees
x=−45.68261…∘+360∘n,x=225.68261…∘+360∘n,x=15.10095…∘+360∘n,x=164.89904…∘+360∘n
Solution steps
csc3(x)−4csc(x)=3cot2(x)
Subtract 3cot2(x) from both sidescsc3(x)−4csc(x)−3cot2(x)=0
Rewrite using trig identities
csc3(x)−3cot2(x)−4csc(x)
Use the Pythagorean identity: 1+cot2(x)=csc2(x)cot2(x)=csc2(x)−1=csc3(x)−3(csc2(x)−1)−4csc(x)
csc3(x)−(−1+csc2(x))⋅3−4csc(x)=0
Solve by substitution
csc3(x)−(−1+csc2(x))⋅3−4csc(x)=0
Let: csc(x)=uu3−(−1+u2)⋅3−4u=0
u3−(−1+u2)⋅3−4u=0:u≈0.55919…,u≈−1.39766…,u≈3.83846…
u3−(−1+u2)⋅3−4u=0
Expand u3−(−1+u2)⋅3−4u:u3+3−3u2−4u
u3−(−1+u2)⋅3−4u
=u3−3(−1+u2)−4u
Expand −3(−1+u2):3−3u2
−3(−1+u2)
Apply the distributive law: a(b+c)=ab+aca=−3,b=−1,c=u2=−3(−1)+(−3)u2
Apply minus-plus rules−(−a)=a,+(−a)=−a=3⋅1−3u2
Multiply the numbers: 3⋅1=3=3−3u2
=u3+3−3u2−4u
u3+3−3u2−4u=0
Write in the standard form an​xn+…+a1​x+a0​=0u3−3u2−4u+3=0
Find one solution for u3−3u2−4u+3=0 using Newton-Raphson:u≈0.55919…
u3−3u2−4u+3=0
Newton-Raphson Approximation Definition
f(u)=u3−3u2−4u+3
Find f′(u):3u2−6u−4
dud​(u3−3u2−4u+3)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u3)−dud​(3u2)−dud​(4u)+dud​(3)
dud​(u3)=3u2
dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud​(3u2)=6u
dud​(3u2)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅2u2−1
Simplify=6u
dud​(4u)=4
dud​(4u)
Take the constant out: (a⋅f)′=a⋅f′=4dudu​
Apply the common derivative: dudu​=1=4⋅1
Simplify=4
dud​(3)=0
dud​(3)
Derivative of a constant: dxd​(a)=0=0
=3u2−6u−4+0
Simplify=3u2−6u−4
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.57142…:Δu1​=0.42857…
f(u0​)=13−3⋅12−4⋅1+3=−3f′(u0​)=3⋅12−6⋅1−4=−7u1​=0.57142…
Δu1​=∣0.57142…−1∣=0.42857…Δu1​=0.42857…
u2​=0.55922…:Δu2​=0.01220…
f(u1​)=0.57142…3−3⋅0.57142…2−4⋅0.57142…+3=−0.07871…f′(u1​)=3⋅0.57142…2−6⋅0.57142…−4=−6.44897…u2​=0.55922…
Δu2​=∣0.55922…−0.57142…∣=0.01220…Δu2​=0.01220…
u3​=0.55919…:Δu3​=0.00003…
f(u2​)=0.55922…3−3⋅0.55922…2−4⋅0.55922…+3=−0.00019…f′(u2​)=3⋅0.55922…2−6⋅0.55922…−4=−6.41714…u3​=0.55919…
Δu3​=∣0.55919…−0.55922…∣=0.00003…Δu3​=0.00003…
u4​=0.55919…:Δu4​=1.87129E−10
f(u3​)=0.55919…3−3⋅0.55919…2−4⋅0.55919…+3=−1.20082E−9f′(u3​)=3⋅0.55919…2−6⋅0.55919…−4=−6.41706…u4​=0.55919…
Δu4​=∣0.55919…−0.55919…∣=1.87129E−10Δu4​=1.87129E−10
u≈0.55919…
Apply long division:u−0.55919…u3−3u2−4u+3​=u2−2.44080…u−5.36488…
u2−2.44080…u−5.36488…≈0
Find one solution for u2−2.44080…u−5.36488…=0 using Newton-Raphson:u≈−1.39766…
u2−2.44080…u−5.36488…=0
Newton-Raphson Approximation Definition
f(u)=u2−2.44080…u−5.36488…
Find f′(u):2u−2.44080…
dud​(u2−2.44080…u−5.36488…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u2)−dud​(2.44080…u)−dud​(5.36488…)
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(2.44080…u)=2.44080…
dud​(2.44080…u)
Take the constant out: (a⋅f)′=a⋅f′=2.44080…dudu​
Apply the common derivative: dudu​=1=2.44080…⋅1
Simplify=2.44080…
dud​(5.36488…)=0
dud​(5.36488…)
Derivative of a constant: dxd​(a)=0=0
=2u−2.44080…−0
Simplify=2u−2.44080…
Let u0​=−2Compute un+1​ until Δun+1​<0.000001
u1​=−1.45399…:Δu1​=0.54600…
f(u0​)=(−2)2−2.44080…(−2)−5.36488…=3.51673…f′(u0​)=2(−2)−2.44080…=−6.44080…u1​=−1.45399…
Δu1​=∣−1.45399…−(−2)∣=0.54600…Δu1​=0.54600…
u2​=−1.39825…:Δu2​=0.05573…
f(u1​)=(−1.45399…)2−2.44080…(−1.45399…)−5.36488…=0.29812…f′(u1​)=2(−1.45399…)−2.44080…=−5.34879…u2​=−1.39825…
Δu2​=∣−1.39825…−(−1.45399…)∣=0.05573…Δu2​=0.05573…
u3​=−1.39766…:Δu3​=0.00059…
f(u2​)=(−1.39825…)2−2.44080…(−1.39825…)−5.36488…=0.00310…f′(u2​)=2(−1.39825…)−2.44080…=−5.23731…u3​=−1.39766…
Δu3​=∣−1.39766…−(−1.39825…)∣=0.00059…Δu3​=0.00059…
u4​=−1.39766…:Δu4​=6.7196E−8
f(u3​)=(−1.39766…)2−2.44080…(−1.39766…)−5.36488…=3.51847E−7f′(u3​)=2(−1.39766…)−2.44080…=−5.23613…u4​=−1.39766…
Δu4​=∣−1.39766…−(−1.39766…)∣=6.7196E−8Δu4​=6.7196E−8
u≈−1.39766…
Apply long division:u+1.39766…u2−2.44080…u−5.36488…​=u−3.83846…
u−3.83846…≈0
u≈3.83846…
The solutions areu≈0.55919…,u≈−1.39766…,u≈3.83846…
Substitute back u=csc(x)csc(x)≈0.55919…,csc(x)≈−1.39766…,csc(x)≈3.83846…
csc(x)≈0.55919…,csc(x)≈−1.39766…,csc(x)≈3.83846…
csc(x)=0.55919…:No Solution
csc(x)=0.55919…
csc(x)≤−1orcsc(x)≥1NoSolution
csc(x)=−1.39766…:x=arccsc(−1.39766…)+2πn,x=π+arccsc(1.39766…)+2πn
csc(x)=−1.39766…
Apply trig inverse properties
csc(x)=−1.39766…
General solutions for csc(x)=−1.39766…csc(x)=−a⇒x=arccsc(−a)+2πn,x=π+arccsc(a)+2πnx=arccsc(−1.39766…)+2πn,x=π+arccsc(1.39766…)+2πn
x=arccsc(−1.39766…)+2πn,x=π+arccsc(1.39766…)+2πn
csc(x)=3.83846…:x=arccsc(3.83846…)+2πn,x=π−arccsc(3.83846…)+2πn
csc(x)=3.83846…
Apply trig inverse properties
csc(x)=3.83846…
General solutions for csc(x)=3.83846…csc(x)=a⇒x=arccsc(a)+2πn,x=π−arccsc(a)+2πnx=arccsc(3.83846…)+2πn,x=π−arccsc(3.83846…)+2πn
x=arccsc(3.83846…)+2πn,x=π−arccsc(3.83846…)+2πn
Combine all the solutionsx=arccsc(−1.39766…)+2πn,x=π+arccsc(1.39766…)+2πn,x=arccsc(3.83846…)+2πn,x=π−arccsc(3.83846…)+2πn
Show solutions in decimal formx=−0.79731…+2πn,x=π+0.79731…+2πn,x=0.26356…+2πn,x=π−0.26356…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1+tan^2(θ)=4tan^2(θ)(tan(θ)+1)(cos(θ)+1)(sin(θ))=06sin(2x)-3=04cos^2(x)-sin(x)=10.6=cos(4x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024