Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tanh(mL)=0.99

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tanh(mL)=0.99

Solution

L=2mln(0.011.99​)​
Solution steps
tanh(mL)=0.99
Rewrite using trig identities
tanh(mL)=0.99
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​emL+e−mLemL−e−mL​=0.99
emL+e−mLemL−e−mL​=0.99
emL+e−mLemL−e−mL​=0.99:L=2mln(0.011.99​)​{m<0orm>0}
emL+e−mLemL−e−mL​=0.99
Multiply both sides by emL+e−mLemL+e−mLemL−e−mL​(emL+e−mL)=0.99(emL+e−mL)
SimplifyemL−e−mL=0.99(emL+e−mL)
Subtract 0.99(emL+e−mL) from both sidesemL−e−mL−0.99(emL+e−mL)=0.99(emL+e−mL)−0.99(emL+e−mL)
SimplifyemL−e−mL−0.99(emL+e−mL)=0
Factor emL−e−mL−0.99(emL+e−mL):e−mL(0.01​emL+1.99​)(0.01​emL−1.99​)
emL−e−mL−0.99(emL+e−mL)
Factor emL+e−mL:e−mL(e2mL+1)
emL+e−mL
Apply exponent rule: ab+c=abacemL=e−mLe2mL=e−mLe2mL+e−mL
Factor out common term e−mL=e−mL(e2mL+1)
=emL−e−mL−0.99e−mL(e2mL+1)
Apply exponent rule: ab+c=abacemL=e−mLe2mL=e−mLe2mL−e−mL−0.99e−mL(e2mL+1)
Factor out common term e−mL=e−mL(e2mL−1−0.99(e2mL+1))
Factor e2mL−0.99(e2mL+1)−1:(0.01​emL+1.99​)(0.01​emL−1.99​)
e2mL−1−0.99(e2mL+1)
Expand −0.99(e2mL+1):−0.99e2mL−0.99
−0.99(e2mL+1)
Apply the distributive law: a(b+c)=ab+aca=−0.99,b=e2mL,c=1=−0.99e2mL+(−0.99)⋅1
Apply minus-plus rules+(−a)=−a=−0.99e2mL−1⋅0.99
Multiply the numbers: 1⋅0.99=0.99=−0.99e2mL−0.99
=e2mL−1−0.99e2mL−0.99
Simplify e2mL−1−0.99e2mL−0.99:0.01e2mL−1.99
e2mL−1−0.99e2mL−0.99
Group like terms=e2mL−0.99e2mL−1−0.99
Add similar elements: e2mL−0.99e2mL=0.01e2mL=0.01e2mL−1−0.99
Subtract the numbers: −1−0.99=−1.99=0.01e2mL−1.99
=0.01e2mL−1.99
Apply exponent rule: abc=(ab)ce2mL=(emL)2=0.01(emL)2−1.99
Rewrite 0.01(emL)2−1.99 as (0.01​emL)2−(1.99​)2
0.01(emL)2−1.99
Apply radical rule: a=(a​)20.01=(0.01​)2=(0.01​)2(emL)2−1.99
Apply radical rule: a=(a​)21.99=(1.99​)2=(0.01​)2(emL)2−(1.99​)2
Apply exponent rule: ambm=(ab)m(0.01​)2(emL)2=(0.01​emL)2=(0.01​emL)2−(1.99​)2
=(0.01​emL)2−(1.99​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(0.01​emL)2−(1.99​)2=(0.01​emL+1.99​)(0.01​emL−1.99​)=(0.01​emL+1.99​)(0.01​emL−1.99​)
=e−mL(0.01​emL+1.99​)(0.01​emL−1.99​)
e−mL(0.01​emL+1.99​)(0.01​emL−1.99​)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0e−mL=0or0.01​emL+1.99​=0or0.01​emL−1.99​=0
Solve e−mL=0:No Solution for L∈R
e−mL=0
af(L) cannot be zero or negative for L∈RNoSolutionforL∈R
Solve 0.01​emL+1.99​=0:No Solution for L∈R
0.01​emL+1.99​=0
Subtract 1.99​ from both sides0.01​emL+1.99​−1.99​=0−1.99​
Simplify0.01​emL=−1.99​
Divide both sides by 0.01​
0.01​emL=−1.99​
Divide both sides by 0.01​0.01​0.01​emL​=0.01​−1.99​​
SimplifyemL=−0.01​1.99​​
emL=−0.01​1.99​​
SimplifyemL=−0.011.99​​
af(L) cannot be zero or negative for L∈RNoSolutionforL∈R
Solve 0.01​emL−1.99​=0:L=2mln(0.011.99​)​
0.01​emL−1.99​=0
Add 1.99​ to both sides0.01​emL−1.99​+1.99​=0+1.99​
Simplify0.01​emL=1.99​
Divide both sides by 0.01​
0.01​emL=1.99​
Divide both sides by 0.01​0.01​0.01​emL​=0.01​1.99​​
SimplifyemL=0.01​1.99​​
emL=0.01​1.99​​
SimplifyemL=0.011.99​​
Apply exponent rules
emL=0.011.99​​
Apply exponent rule: a​=a21​0.011.99​​=(0.011.99​)21​emL=(0.011.99​)21​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(emL)=ln((0.011.99​)21​)
Apply log rule: ln(ea)=aln(emL)=mLmL=ln((0.011.99​)21​)
Apply log rule: ln(xa)=a⋅ln(x)ln((0.011.99​)21​)=21​ln(0.011.99​)mL=21​ln(0.011.99​)
mL=21​ln(0.011.99​)
Solve mL=21​ln(0.011.99​):L=2mln(0.011.99​)​
mL=21​ln(0.011.99​)
Divide both sides by m
mL=21​ln(0.011.99​)
Divide both sides by mmmL​=m21​ln(0.011.99​)​
Simplify
mmL​=m21​ln(0.011.99​)​
Simplify mmL​:L
mmL​
Cancel the common factor: m=L
Simplify m21​ln(0.011.99​)​:2mln(0.011.99​)​
m21​ln(0.011.99​)​
Multiply 21​ln(0.011.99​):2ln(0.011.99​)​
21​ln(0.011.99​)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅ln(0.011.99​)​
Multiply: 1⋅ln(0.011.99​)=ln(0.011.99​)=2ln(0.011.99​)​
=m2ln(0.011.99​)​​
Apply the fraction rule: acb​​=c⋅ab​=2mln(0.011.99​)​
L=2mln(0.011.99​)​
L=2mln(0.011.99​)​
L=2mln(0.011.99​)​
L=2mln(0.011.99​)​
Verify Solutions:L=2mln(0.011.99​)​{m<0orm>0}
Check the solutions by plugging them into emL+e−mLemL−e−mL​=0.99
Remove the ones that don't agree with the equation.
Plug in L=2mln(0.011.99​)​:m<0orm>0
em(2mln(0.011.99​)​)+e−m(2mln(0.011.99​)​)em(2mln(0.011.99​)​)−e−m(2mln(0.011.99​)​)​=0.99
em(2mln(0.011.99​)​)+e−m(2mln(0.011.99​)​)em(2mln(0.011.99​)​)−e−m(2mln(0.011.99​)​)​=0.99
em(2mln(0.011.99​)​)+e−m(2mln(0.011.99​)​)em(2mln(0.011.99​)​)−e−m(2mln(0.011.99​)​)​
Remove parentheses: (a)=a=em2mln(0.011.99​)​+e−m2mln(0.011.99​)​em2mln(0.011.99​)​−e−m2mln(0.011.99​)​​
Multiply m2mln(0.011.99​)​:2.64665…
m2mln(0.011.99​)​
Multiply fractions: a⋅cb​=ca⋅b​=2mln(0.011.99​)m​
Cancel the common factor: m=2ln(0.011.99​)​
Convert element to a decimal form21​=0.5=0.5ln(0.011.99​)
Divide the numbers: 0.011.99​=199=0.5ln(199)
Simplify ln(199):5.29330…
ln(199)
Refine to a decimal form=5.29330…
=0.5⋅5.29330…
Multiply the numbers: 0.5⋅5.29330…=2.64665…=2.64665…
=e2.64665…+e−m2mln(0.011.99​)​em2mln(0.011.99​)​−e−m2mln(0.011.99​)​​
Multiply −m2mln(0.011.99​)​:−2.64665…
−m2mln(0.011.99​)​
Multiply fractions: a⋅cb​=ca⋅b​=−2mln(0.011.99​)m​
Cancel the common factor: m=−2ln(0.011.99​)​
Convert element to a decimal form21​=0.5=−0.5ln(0.011.99​)
Divide the numbers: 0.011.99​=199=−0.5ln(199)
Simplify ln(199):5.29330…
ln(199)
Refine to a decimal form=5.29330…
=−0.5⋅5.29330…
Multiply the numbers: 0.5⋅5.29330…=2.64665…=−2.64665…
=e2.64665…+e−2.64665…em2mln(0.011.99​)​−e−m2mln(0.011.99​)​​
Multiply m2mln(0.011.99​)​:2.64665…
m2mln(0.011.99​)​
Multiply fractions: a⋅cb​=ca⋅b​=2mln(0.011.99​)m​
Cancel the common factor: m=2ln(0.011.99​)​
Convert element to a decimal form21​=0.5=0.5ln(0.011.99​)
Divide the numbers: 0.011.99​=199=0.5ln(199)
Simplify ln(199):5.29330…
ln(199)
Refine to a decimal form=5.29330…
=0.5⋅5.29330…
Multiply the numbers: 0.5⋅5.29330…=2.64665…=2.64665…
=e2.64665…+e−2.64665…e2.64665…−e−m2mln(0.011.99​)​​
Multiply −m2mln(0.011.99​)​:−2.64665…
−m2mln(0.011.99​)​
Multiply fractions: a⋅cb​=ca⋅b​=−2mln(0.011.99​)m​
Cancel the common factor: m=−2ln(0.011.99​)​
Convert element to a decimal form21​=0.5=−0.5ln(0.011.99​)
Divide the numbers: 0.011.99​=199=−0.5ln(199)
Simplify ln(199):5.29330…
ln(199)
Refine to a decimal form=5.29330…
=−0.5⋅5.29330…
Multiply the numbers: 0.5⋅5.29330…=2.64665…=−2.64665…
=e2.64665…+e−2.64665…e2.64665…−e−2.64665…​
Simplify
e2.64665…+e−2.64665…e2.64665…−e−2.64665…​
Apply exponent rule: a−b=ab1​e−2.64665…=e2.64665…1​=e2.64665…+e2.64665…1​e2.64665…−e−2.64665…​
Apply exponent rule: a−b=ab1​e−2.64665…=e2.64665…1​=e2.64665…+e2.64665…1​e2.64665…−e2.64665…1​​
Join e2.64665…+e2.64665…1​:14.17762…
e2.64665…+e2.64665…1​
Convert element to fraction: e2.64665…=e2.64665…e2.64665…e2.64665…​=e2.64665…e2.64665…e2.64665…​+e2.64665…1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e2.64665…e2.64665…e2.64665…+1​
e2.64665…e2.64665…+1=e5.29330…+1
e2.64665…e2.64665…+1
e2.64665…e2.64665…=e5.29330…
e2.64665…e2.64665…
Apply exponent rule: ab⋅ac=ab+ce2.64665…e2.64665…=e2.64665…+2.64665…=e2.64665…+2.64665…
Add the numbers: 2.64665…+2.64665…=5.29330…=e5.29330…
=e5.29330…+1
=e2.64665…e5.29330…+1​
e5.29330…=198.99999…=e2.64665…198.99999…+1​
Add the numbers: 198.99999…+1=199.99999…=e2.64665…199.99999…​
e2.64665…=14.10673…=14.10673…199.99999…​
Divide the numbers: 14.10673…199.99999…​=14.17762…=14.17762…
=14.17762…e2.64665…−e2.64665…1​​
Join e2.64665…−e2.64665…1​:14.03584…
e2.64665…−e2.64665…1​
Convert element to fraction: e2.64665…=e2.64665…e2.64665…e2.64665…​=e2.64665…e2.64665…e2.64665…​−e2.64665…1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e2.64665…e2.64665…e2.64665…−1​
e2.64665…e2.64665…−1=e5.29330…−1
e2.64665…e2.64665…−1
e2.64665…e2.64665…=e5.29330…
e2.64665…e2.64665…
Apply exponent rule: ab⋅ac=ab+ce2.64665…e2.64665…=e2.64665…+2.64665…=e2.64665…+2.64665…
Add the numbers: 2.64665…+2.64665…=5.29330…=e5.29330…
=e5.29330…−1
=e2.64665…e5.29330…−1​
e5.29330…=198.99999…=e2.64665…198.99999…−1​
Subtract the numbers: 198.99999…−1=197.99999…=e2.64665…197.99999…​
e2.64665…=14.10673…=14.10673…197.99999…​
Divide the numbers: 14.10673…197.99999…​=14.03584…=14.03584…
=14.17762…14.03584…​
Divide the numbers: 14.17762…14.03584…​=0.99=0.99
=0.99
0.99=0.99
Domain of em(2mln(0.011.99​)​)+e−m(2mln(0.011.99​)​)em(2mln(0.011.99​)​)−e−m(2mln(0.011.99​)​)​:m<0orm>0
Domain definition
Find undefined (singularity) points:m=0
em(2mln(0.011.99​)​)+e−m(2mln(0.011.99​)​)em(2mln(0.011.99​)​)−e−m(2mln(0.011.99​)​)​
Take the denominator(s) of em(2mln(0.011.99​)​)+e−m(2mln(0.011.99​)​)em(2mln(0.011.99​)​)−e−m(2mln(0.011.99​)​)​ and compare to zero
Solve 2m=0:m=0
2m=0
Divide both sides by 2
2m=0
Divide both sides by 222m​=20​
Simplifym=0
m=0
The following points are undefinedm=0
The function domainm<0orm>0
m<0orm>0
The solution isL=2mln(0.011.99​)​{m<0orm>0}
L=2mln(0.011.99​)​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=4.88445cos(x)=5-5cos(x)cos(2A)+cos(A)=12*9.19*sin(x)=1.5406csc^3(x)-4csc(x)=3cot^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for tanh(mL)=0.99 ?

    The general solution for tanh(mL)=0.99 is L=(ln(\frac{1.99)/(0.01))}{2m}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024