Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,y-1=-4+3sin(4x-pi/4)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=4arcsin(3y+3​)​+2πn​+16π​,x=4π​+16π​+2πn​+4arcsin(−3y+3​)​
Solution steps
y−1=−4+3sin(4x−4π​)
Switch sides−4+3sin(4x−4π​)=y−1
Move 4to the right side
−4+3sin(4x−4π​)=y−1
Add 4 to both sides−4+3sin(4x−4π​)+4=y−1+4
Simplify3sin(4x−4π​)=y+3
3sin(4x−4π​)=y+3
Divide both sides by 3
3sin(4x−4π​)=y+3
Divide both sides by 333sin(4x−4π​)​=3y​+33​
Simplify
33sin(4x−4π​)​=3y​+33​
Simplify 33sin(4x−4π​)​:sin(4x−4π​)
33sin(4x−4π​)​
Divide the numbers: 33​=1=sin(4x−4π​)
Simplify 3y​+33​:3y+3​
3y​+33​
Apply rule ca​±cb​=ca±b​=3y+3​
sin(4x−4π​)=3y+3​
sin(4x−4π​)=3y+3​
sin(4x−4π​)=3y+3​
Apply trig inverse properties
sin(4x−4π​)=3y+3​
General solutions for sin(4x−4π​)=3y+3​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πn4x−4π​=arcsin(3y+3​)+2πn,4x−4π​=π+arcsin(−3y+3​)+2πn
4x−4π​=arcsin(3y+3​)+2πn,4x−4π​=π+arcsin(−3y+3​)+2πn
Solve 4x−4π​=arcsin(3y+3​)+2πn:x=4arcsin(3y+3​)​+2πn​+16π​
4x−4π​=arcsin(3y+3​)+2πn
Move 4π​to the right side
4x−4π​=arcsin(3y+3​)+2πn
Add 4π​ to both sides4x−4π​+4π​=arcsin(3y+3​)+2πn+4π​
Simplify4x=arcsin(3y+3​)+2πn+4π​
4x=arcsin(3y+3​)+2πn+4π​
Divide both sides by 4
4x=arcsin(3y+3​)+2πn+4π​
Divide both sides by 444x​=4arcsin(3y+3​)​+42πn​+44π​​
Simplify
44x​=4arcsin(3y+3​)​+42πn​+44π​​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 4arcsin(3y+3​)​+42πn​+44π​​:4arcsin(3y+3​)​+2πn​+16π​
4arcsin(3y+3​)​+42πn​+44π​​
42πn​=2πn​
42πn​
Cancel the common factor: 2=2πn​
44π​​=16π​
44π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅4π​
Multiply the numbers: 4⋅4=16=16π​
=4arcsin(3y+3​)​+2πn​+16π​
x=4arcsin(3y+3​)​+2πn​+16π​
x=4arcsin(3y+3​)​+2πn​+16π​
x=4arcsin(3y+3​)​+2πn​+16π​
Solve 4x−4π​=π+arcsin(−3y+3​)+2πn:x=4π​+16π​+2πn​+4arcsin(−3y+3​)​
4x−4π​=π+arcsin(−3y+3​)+2πn
Move 4π​to the right side
4x−4π​=π+arcsin(−3y+3​)+2πn
Add 4π​ to both sides4x−4π​+4π​=π+arcsin(−3y+3​)+2πn+4π​
Simplify4x=π+arcsin(−3y+3​)+2πn+4π​
4x=π+arcsin(−3y+3​)+2πn+4π​
Divide both sides by 4
4x=π+arcsin(−3y+3​)+2πn+4π​
Divide both sides by 444x​=4π​+4arcsin(−3y+3​)​+42πn​+44π​​
Simplify
44x​=4π​+4arcsin(−3y+3​)​+42πn​+44π​​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 4π​+4arcsin(−3y+3​)​+42πn​+44π​​:4π​+16π​+2πn​+4arcsin(−3y+3​)​
4π​+4arcsin(−3y+3​)​+42πn​+44π​​
Group like terms=4π​+42πn​+44π​​+4arcsin(−3y+3​)​
42πn​=2πn​
42πn​
Cancel the common factor: 2=2πn​
44π​​=16π​
44π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅4π​
Multiply the numbers: 4⋅4=16=16π​
=4π​+2πn​+16π​+4arcsin(−3y+3​)​
Group like terms=4π​+16π​+2πn​+4arcsin(−3y+3​)​
x=4π​+16π​+2πn​+4arcsin(−3y+3​)​
x=4π​+16π​+2πn​+4arcsin(−3y+3​)​
x=4π​+16π​+2πn​+4arcsin(−3y+3​)​
x=4arcsin(3y+3​)​+2πn​+16π​,x=4π​+16π​+2πn​+4arcsin(−3y+3​)​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

64=81+25-90(cos(C))sin^2(a-pi/8)= 2/3cos^4(x)-3cos^2(x)=410cos(θ)=-5cos(θ)tan(2θ)=1.33
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024