Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x-15)=cos(20+x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x−15∘)=cos(20∘+x)

Solution

x=7212960∘n+3060∘​
+1
Radians
x=7217π​+7272π​n
Solution steps
sin(x−15∘)=cos(20∘+x)
Rewrite using trig identities
sin(x−15∘)=cos(20∘+x)
Use the following identity: cos(x)=sin(90∘−x)sin(x−15∘)=sin(90∘−(20∘+x))
sin(x−15∘)=sin(90∘−(20∘+x))
Apply trig inverse properties
sin(x−15∘)=sin(90∘−(20∘+x))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πnx−15∘=90∘−(20∘+x)+360∘n,x−15∘=180∘−(90∘−(20∘+x))+360∘n
x−15∘=90∘−(20∘+x)+360∘n,x−15∘=180∘−(90∘−(20∘+x))+360∘n
x−15∘=90∘−(20∘+x)+360∘n:x=7212960∘n+3060∘​
x−15∘=90∘−(20∘+x)+360∘n
Expand 90∘−(20∘+x)+360∘n:−x+360∘n+70∘
90∘−(20∘+x)+360∘n
−(20∘+x):−20∘−x
−(20∘+x)
Distribute parentheses=−(20∘)−(x)
Apply minus-plus rules+(−a)=−a=−20∘−x
=90∘−20∘−x+360∘n
Simplify 90∘−20∘−x+360∘n:−x+360∘n+70∘
90∘−20∘−x+360∘n
Least Common Multiplier of 2,9:18
2,9
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 9=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 90∘:multiply the denominator and numerator by 990∘=2⋅9180∘9​=90∘
For 20∘:multiply the denominator and numerator by 220∘=9⋅2180∘2​=20∘
=90∘−20∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18180∘9−180∘2​
Add similar elements: 1620∘−360∘=1260∘=−x+360∘n+70∘
=−x+360∘n+70∘
x−15∘=−x+360∘n+70∘
Move 15∘to the right side
x−15∘=−x+360∘n+70∘
Add 15∘ to both sidesx−15∘+15∘=−x+360∘n+70∘+15∘
Simplify
x−15∘+15∘=−x+360∘n+70∘+15∘
Simplify x−15∘+15∘:x
x−15∘+15∘
Add similar elements: −15∘+15∘=0
=x
Simplify −x+360∘n+70∘+15∘:−x+360∘n+85∘
−x+360∘n+70∘+15∘
Least Common Multiplier of 18,12:36
18,12
Least Common Multiplier (LCM)
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply each factor the greatest number of times it occurs in either 18 or 12=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 70∘:multiply the denominator and numerator by 270∘=18⋅21260∘2​=70∘
For 15∘:multiply the denominator and numerator by 315∘=12⋅3180∘3​=15∘
=70∘+15∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=362520∘+180∘3​
Add similar elements: 2520∘+540∘=3060∘=−x+360∘n+85∘
x=−x+360∘n+85∘
x=−x+360∘n+85∘
x=−x+360∘n+85∘
Move xto the left side
x=−x+360∘n+85∘
Add x to both sidesx+x=−x+360∘n+85∘+x
Simplify2x=360∘n+85∘
2x=360∘n+85∘
Divide both sides by 2
2x=360∘n+85∘
Divide both sides by 222x​=2360∘n​+285∘​
Simplify
22x​=2360∘n​+285∘​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2360∘n​+285∘​:7212960∘n+3060∘​
2360∘n​+285∘​
Apply rule ca​±cb​=ca±b​=2360∘n+85∘​
Join 360∘n+85∘:3612960∘n+3060∘​
360∘n+85∘
Convert element to fraction: 360∘n=36360∘n36​=36360∘n⋅36​+85∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36360∘n⋅36+3060∘​
Multiply the numbers: 2⋅36=72=3612960∘n+3060∘​
=23612960∘n+3060∘​​
Apply the fraction rule: acb​​=c⋅ab​=36⋅212960∘n+3060∘​
Multiply the numbers: 36⋅2=72=7212960∘n+3060∘​
x=7212960∘n+3060∘​
x=7212960∘n+3060∘​
x=7212960∘n+3060∘​
x−15∘=180∘−(90∘−(20∘+x))+360∘n:True for all x;0=180∘+360∘n−55∘
x−15∘=180∘−(90∘−(20∘+x))+360∘n
Expand 180∘−(90∘−(20∘+x))+360∘n:180∘+x−70∘+360∘n
180∘−(90∘−(20∘+x))+360∘n
Expand 90∘−(20∘+x):−x+70∘
90∘−(20∘+x)
−(20∘+x):−20∘−x
−(20∘+x)
Distribute parentheses=−(20∘)−(x)
Apply minus-plus rules+(−a)=−a=−20∘−x
=90∘−20∘−x
Simplify 90∘−20∘−x:−x+70∘
90∘−20∘−x
Least Common Multiplier of 2,9:18
2,9
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 9=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 90∘:multiply the denominator and numerator by 990∘=2⋅9180∘9​=90∘
For 20∘:multiply the denominator and numerator by 220∘=9⋅2180∘2​=20∘
=90∘−20∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18180∘9−180∘2​
Add similar elements: 1620∘−360∘=1260∘=−x+70∘
=−x+70∘
=180∘−(−x+70∘)+360∘n
−(−x+70∘):x−70∘
−(−x+70∘)
Distribute parentheses=−(−x)−(70∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=x−70∘
=180∘+x−70∘+360∘n
x−15∘=180∘+x−70∘+360∘n
Move 15∘to the right side
x−15∘=180∘+x−70∘+360∘n
Add 15∘ to both sidesx−15∘+15∘=180∘+x−70∘+360∘n+15∘
Simplify
x−15∘+15∘=180∘+x−70∘+360∘n+15∘
Simplify x−15∘+15∘:x
x−15∘+15∘
Add similar elements: −15∘+15∘=0
=x
Simplify 180∘+x−70∘+360∘n+15∘:x+180∘+360∘n−55∘
180∘+x−70∘+360∘n+15∘
Group like terms=x+180∘+360∘n+15∘−70∘
Least Common Multiplier of 12,18:36
12,18
Least Common Multiplier (LCM)
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 12 or 18=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 15∘:multiply the denominator and numerator by 315∘=12⋅3180∘3​=15∘
For 70∘:multiply the denominator and numerator by 270∘=18⋅21260∘2​=70∘
=15∘−70∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36180∘3−2520∘​
Add similar elements: 540∘−2520∘=−1980∘=36−1980∘​
Apply the fraction rule: b−a​=−ba​=x+180∘+360∘n−55∘
x=x+180∘+360∘n−55∘
x=x+180∘+360∘n−55∘
x=x+180∘+360∘n−55∘
Move xto the left side
x=x+180∘+360∘n−55∘
Subtract x from both sidesx−x=x+180∘+360∘n−55∘−x
Simplify0=180∘+360∘n−55∘
0=180∘+360∘n−55∘
Both sides are equalTrueforallx;0=180∘+360∘n−55∘
Since the equation is undefined for:True for all xx=7212960∘n+3060∘​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

15sin^2(x)-17sin(x)+4=0tan^2(x)=2sec(x)-sin^2(x)=sin^4(x)3cos^2(x)=sin(2x)*sin(x)csc(t)=2

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x-15)=cos(20+x) ?

    The general solution for sin(x-15)=cos(20+x) is x=(12960n+3060)/(72)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024