Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(0.5)-arctan(1/3)=arctan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(0.5)−arctan(31​)=arctan(x)

Solution

x=71​
Solution steps
arctan(0.5)−arctan(31​)=arctan(x)
arctan(0.5)=arctan(21​)
arctan(0.5)
arctan(21​)−arctan(31​)=arctan(x)
Switch sidesarctan(x)=arctan(21​)−arctan(31​)
Apply trig inverse properties
arctan(x)=arctan(21​)−arctan(31​)
arctan(x)=a⇒x=tan(a)x=tan(arctan(21​)−arctan(31​))
tan(arctan(21​)−arctan(31​))=71​
tan(arctan(21​)−arctan(31​))
Rewrite using trig identities:1+tan(arctan(21​))tan(arctan(31​))tan(arctan(21​))−tan(arctan(31​))​
tan(arctan(21​)−arctan(31​))
Use the Angle Difference identity: tan(s−t)=1+tan(s)tan(t)tan(s)−tan(t)​=1+tan(arctan(21​))tan(arctan(31​))tan(arctan(21​))−tan(arctan(31​))​
=1+tan(arctan(21​))tan(arctan(31​))tan(arctan(21​))−tan(arctan(31​))​
Rewrite using trig identities:tan(arctan(21​))=21​
Use the following identity: tan(arctan(x))=x
=21​
Rewrite using trig identities:tan(arctan(31​))=31​
Use the following identity: tan(arctan(x))=x
=31​
=1+21​⋅31​21​−31​​
Simplify 1+21​⋅31​21​−31​​:71​
1+21​⋅31​21​−31​​
21​⋅31​=61​
21​⋅31​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅31⋅1​
Multiply the numbers: 1⋅1=1=2⋅31​
Multiply the numbers: 2⋅3=6=61​
=1+61​21​−31​​
Join 21​−31​:61​
21​−31​
Least Common Multiplier of 2,3:6
2,3
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 2 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 21​:multiply the denominator and numerator by 321​=2⋅31⋅3​=63​
For 31​:multiply the denominator and numerator by 231​=3⋅21⋅2​=62​
=63​−62​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=63−2​
Subtract the numbers: 3−2=1=61​
=1+61​61​​
Apply the fraction rule: acb​​=c⋅ab​=6(1+61​)1​
Join 1+61​:67​
1+61​
Convert element to fraction: 1=61⋅6​=61⋅6​+61​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=61⋅6+1​
1⋅6+1=7
1⋅6+1
Multiply the numbers: 1⋅6=6=6+1
Add the numbers: 6+1=7=7
=67​
=6⋅67​1​
Multiply 6⋅67​:7
6⋅67​
Multiply fractions: a⋅cb​=ca⋅b​=67⋅6​
Cancel the common factor: 6=7
=71​
=71​
x=71​
x=71​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arctan(x)=30solvefor x,(cos(x))/(tag)= 3/2sin^3(x)=2sin(x)tan(x)=(3/2)2sin(3x)=1,0<= x<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(0.5)-arctan(1/3)=arctan(x) ?

    The general solution for arctan(0.5)-arctan(1/3)=arctan(x) is x= 1/7
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024