Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(x)= 3/(4*5cos^2(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)=4⋅5cos2(x)3​

Solution

x=0.89907…+2πn,x=2π−0.89907…+2πn,x=2.24251…+2πn,x=−2.24251…+2πn
+1
Degrees
x=51.51329…∘+360∘n,x=308.48670…∘+360∘n,x=128.48670…∘+360∘n,x=−128.48670…∘+360∘n
Solution steps
cos2(x)=4⋅5cos2(x)3​
Solve by substitution
cos2(x)=4⋅5cos2(x)3​
Let: cos(x)=uu2=4⋅5u23​
u2=4⋅5u23​:u=1015​​​,u=−1015​​​,u=i1015​​​,u=−i1015​​​
u2=4⋅5u23​
Simplify 4⋅5u23​:20u23​
4⋅5u23​
Multiply the numbers: 4⋅5=20=20u23​
u2=20u23​
Multiply both sides by u2
u2=20u23​
Multiply both sides by u2u2u2=20u23​u2
Simplify u2u2:u4
u2u2=20u23​u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
u4=203​
u4=203​
Solve u4=203​:u=1015​​​,u=−1015​​​,u=i1015​​​,u=−i1015​​​
u4=203​
Rewrite the equation with v=u2 and v2=u4v2=203​
Solve v2=203​:v=203​​,v=−203​​
v2=203​
For (g(x))2=f(a) the solutions are g(x)=f(a)​,−f(a)​
v=203​​,v=−203​​
v=203​​,v=−203​​
Substitute back v=u2,solve for u
Solve u2=203​​:u=1015​​​,u=−1015​​​
u2=203​​
Simplify 203​​:1015​​
203​​
Apply radical rule: assuming a≥0,b≥0=20​3​​
20​=25​
20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: =5​22​
Apply radical rule: 22​=2=25​
=25​3​​
Rationalize 25​3​​:1015​​
25​3​​
Multiply by the conjugate 5​5​​=25​5​3​5​​
3​5​=15​
3​5​
Apply radical rule: a​b​=a⋅b​3​5​=3⋅5​=3⋅5​
Multiply the numbers: 3⋅5=15=15​
25​5​=10
25​5​
Apply radical rule: a​a​=a5​5​=5=2⋅5
Multiply the numbers: 2⋅5=10=10
=1015​​
=1015​​
u2=1015​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1015​​​,u=−1015​​​
Solve u2=−203​​:u=i1015​​​,u=−i1015​​​
u2=−203​​
Simplify −203​​:−1015​​
−203​​
Simplify 203​​:25​3​​
203​​
Apply radical rule: assuming a≥0,b≥0=20​3​​
20​=25​
20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: =5​22​
Apply radical rule: 22​=2=25​
=25​3​​
=−25​3​​
Rationalize −25​3​​:−1015​​
−25​3​​
Multiply by the conjugate 5​5​​=−25​5​3​5​​
3​5​=15​
3​5​
Apply radical rule: a​b​=a⋅b​3​5​=3⋅5​=3⋅5​
Multiply the numbers: 3⋅5=15=15​
25​5​=10
25​5​
Apply radical rule: a​a​=a5​5​=5=2⋅5
Multiply the numbers: 2⋅5=10=10
=−1015​​
=−1015​​
u2=−1015​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−1015​​​,u=−−1015​​​
Simplify −1015​​​:i1015​​​
−1015​​​
Apply radical rule: −a​=−1​a​−1015​​​=−1​1015​​​=−1​1015​​​
Apply imaginary number rule: −1​=i=i1015​​​
Rewrite i1015​​​ in standard complex form: 1015​​​i
i1015​​​
1015​​​=25​3​​​
1015​​​
1015​​=25​3​​
1015​​
Factor 15​:3​5​
Factor 15=3⋅5=3⋅5​
Apply radical rule: =3​5​
Factor 10:2⋅5
Factor 10=2⋅5
=2⋅53​5​​
Cancel 2⋅53​5​​:25​3​​
2⋅53​5​​
Apply radical rule: 5​=521​=2⋅53​⋅521​​
Apply exponent rule: xbxa​=xb−a1​51521​​=51−21​1​=2⋅5−21​+13​​
Subtract the numbers: 1−21​=21​=2⋅521​3​​
Apply radical rule: 521​=5​=25​3​​
=25​3​​
=25​3​​​
=i25​3​​​
25​3​​​=1015​​​
25​3​​​
25​3​​=1015​​
25​3​​
Multiply by the conjugate 5​5​​=25​5​3​5​​
3​5​=15​
3​5​
Apply radical rule: a​b​=a⋅b​3​5​=3⋅5​=3⋅5​
Multiply the numbers: 3⋅5=15=15​
25​5​=10
25​5​
Apply radical rule: a​a​=a5​5​=5=2⋅5
Multiply the numbers: 2⋅5=10=10
=1015​​
=1015​​​
=1015​​​i
=1015​​​i
Simplify −−1015​​​:−i1015​​​
−−1015​​​
Simplify −1015​​​:i1015​​​
−1015​​​
Apply radical rule: −a​=−1​a​−1015​​​=−1​1015​​​=−1​1015​​​
Apply imaginary number rule: −1​=i=i1015​​​
=−i1015​​​
Rewrite −i1015​​​ in standard complex form: −1015​​​i
−i1015​​​
1015​​​=25​3​​​
1015​​​
1015​​=25​3​​
1015​​
Factor 15​:3​5​
Factor 15=3⋅5=3⋅5​
Apply radical rule: =3​5​
Factor 10:2⋅5
Factor 10=2⋅5
=2⋅53​5​​
Cancel 2⋅53​5​​:25​3​​
2⋅53​5​​
Apply radical rule: 5​=521​=2⋅53​⋅521​​
Apply exponent rule: xbxa​=xb−a1​51521​​=51−21​1​=2⋅5−21​+13​​
Subtract the numbers: 1−21​=21​=2⋅521​3​​
Apply radical rule: 521​=5​=25​3​​
=25​3​​
=25​3​​​
=−i25​3​​​
−25​3​​​=−1015​​​
−25​3​​​
25​3​​=1015​​
25​3​​
Multiply by the conjugate 5​5​​=25​5​3​5​​
3​5​=15​
3​5​
Apply radical rule: a​b​=a⋅b​3​5​=3⋅5​=3⋅5​
Multiply the numbers: 3⋅5=15=15​
25​5​=10
25​5​
Apply radical rule: a​a​=a5​5​=5=2⋅5
Multiply the numbers: 2⋅5=10=10
=1015​​
=−1015​​​
=−1015​​​i
=−1015​​​i
u=i1015​​​,u=−i1015​​​
The solutions are
u=1015​​​,u=−1015​​​,u=i1015​​​,u=−i1015​​​
u=1015​​​,u=−1015​​​,u=i1015​​​,u=−i1015​​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 45u23​ and compare to zero
Solve 45u2=0:u=0
4⋅5u2=0
Divide both sides by 20
4⋅5u2=0
Divide both sides by 20
4⋅5u2=0
Divide both sides by 20204⋅5u2​=200​
Simplifyu2=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1015​​​,u=−1015​​​,u=i1015​​​,u=−i1015​​​
Substitute back u=cos(x)cos(x)=1015​​​,cos(x)=−1015​​​,cos(x)=i1015​​​,cos(x)=−i1015​​​
cos(x)=1015​​​,cos(x)=−1015​​​,cos(x)=i1015​​​,cos(x)=−i1015​​​
cos(x)=1015​​​:x=arccos​1015​​​​+2πn,x=2π−arccos​1015​​​​+2πn
cos(x)=1015​​​
Apply trig inverse properties
cos(x)=1015​​​
General solutions for cos(x)=1015​​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos​1015​​​​+2πn,x=2π−arccos​1015​​​​+2πn
x=arccos​1015​​​​+2πn,x=2π−arccos​1015​​​​+2πn
cos(x)=−1015​​​:x=arccos​−1015​​​​+2πn,x=−arccos​−1015​​​​+2πn
cos(x)=−1015​​​
Apply trig inverse properties
cos(x)=−1015​​​
General solutions for cos(x)=−1015​​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos​−1015​​​​+2πn,x=−arccos​−1015​​​​+2πn
x=arccos​−1015​​​​+2πn,x=−arccos​−1015​​​​+2πn
cos(x)=i1015​​​:No Solution
cos(x)=i1015​​​
NoSolution
cos(x)=−i1015​​​:No Solution
cos(x)=−i1015​​​
NoSolution
Combine all the solutionsx=arccos​1015​​​​+2πn,x=2π−arccos​1015​​​​+2πn,x=arccos​−1015​​​​+2πn,x=−arccos​−1015​​​​+2πn
Show solutions in decimal formx=0.89907…+2πn,x=2π−0.89907…+2πn,x=2.24251…+2πn,x=−2.24251…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(cos^2(x))/(1-cos(x))=1+cos(x)sin(x)= 19/505sin(2x-pi/2)=0.55sin(x)=3sin(x)+cos(x)3-3cos(5x)=3cos(5x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024