Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan(2x)-3cot(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan(2x)−3cot(x)=0

Solution

x=0.52359…+πn,x=−0.52359…+πn
+1
Degrees
x=30∘+180∘n,x=−30∘+180∘n
Solution steps
3tan(2x)−3cot(x)=0
Rewrite using trig identities
−3cot(x)+3tan(2x)
tan(2x)=(1+tan(x))(1−tan(x))2tan(x)​
tan(2x)
Use the Double Angle identity: tan(2x)=1−tan2(x)2tan(x)​=1−tan2(x)2tan(x)​
Factor 1−tan2(x)2tan(x)​:(1+tan(x))(1−tan(x))2tan(x)​
1−tan2(x)2tan(x)​
Factor 1−tan2(x):(1+tan(x))(1−tan(x))
1−tan2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)1−tan2(x)=(1+tan(x))(1−tan(x))=(1+tan(x))(1−tan(x))
=(1+tan(x))(1−tan(x))2tan(x)​
=(1+tan(x))(1−tan(x))2tan(x)​
=−3cot(x)+3⋅(1+tan(x))(1−tan(x))2tan(x)​
3⋅(1+tan(x))(1−tan(x))2tan(x)​=(1+tan(x))(1−tan(x))6tan(x)​
3⋅(1+tan(x))(1−tan(x))2tan(x)​
Multiply fractions: a⋅cb​=ca⋅b​=(1+tan(x))(1−tan(x))2tan(x)⋅3​
Multiply the numbers: 2⋅3=6=(tan(x)+1)(−tan(x)+1)6tan(x)​
=−3cot(x)+(1+tan(x))(1−tan(x))6tan(x)​
Use the basic trigonometric identity: cot(x)=tan(x)1​=(1+tan(x))(1−tan(x))6tan(x)​−3⋅tan(x)1​
Simplify (1+tan(x))(1−tan(x))6tan(x)​−3⋅tan(x)1​:−tan(x)(tan(x)+1)(tan(x)−1)9tan2(x)−3​
(1+tan(x))(1−tan(x))6tan(x)​−3⋅tan(x)1​
3⋅tan(x)1​=tan(x)3​
3⋅tan(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=tan(x)1⋅3​
Multiply the numbers: 1⋅3=3=tan(x)3​
=(tan(x)+1)(−tan(x)+1)6tan(x)​−tan(x)3​
Factor (1+tan(x))(1−tan(x)):−(1+tan(x))(tan(x)−1)
(1+tan(x))(1−tan(x))
Factor 1−tan(x):−(tan(x)−1)
1−tan(x)
Factor out common term −1=−(tan(x)−1)
=−(1+tan(x))(tan(x)−1)
=−(1+tan(x))(tan(x)−1)6tan(x)​−tan(x)3​
Least Common Multiplier of −(1+tan(x))(tan(x)−1),tan(x):−tan(x)(tan(x)+1)(tan(x)−1)
−(1+tan(x))(tan(x)−1),tan(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in −(1+tan(x))(tan(x)−1) or tan(x)=−tan(x)(tan(x)+1)(tan(x)−1)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM −tan(x)(tan(x)+1)(tan(x)−1)
For −(1+tan(x))(tan(x)−1)6tan(x)​:multiply the denominator and numerator by tan(x)−(1+tan(x))(tan(x)−1)6tan(x)​=(−(1+tan(x))(tan(x)−1))tan(x)6tan(x)tan(x)​=−tan(x)(tan(x)+1)(tan(x)−1)6tan2(x)​
For tan(x)3​:multiply the denominator and numerator by −(tan(x)+1)(tan(x)−1)tan(x)3​=tan(x)(−(tan(x)+1)(tan(x)−1))3(−(tan(x)+1)(tan(x)−1))​=−tan(x)(tan(x)+1)(tan(x)−1)−3(tan(x)+1)(tan(x)−1)​
=−tan(x)(tan(x)+1)(tan(x)−1)6tan2(x)​−−tan(x)(tan(x)+1)(tan(x)−1)−3(tan(x)+1)(tan(x)−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=−tan(x)(tan(x)+1)(tan(x)−1)6tan2(x)−(−3(tan(x)+1)(tan(x)−1))​
Refine=−tan(x)(tan(x)+1)(tan(x)−1)6tan2(x)+3(tan(x)+1)(tan(x)−1)​
Expand 6tan2(x)+3(tan(x)+1)(tan(x)−1):9tan2(x)−3
6tan2(x)+3(tan(x)+1)(tan(x)−1)
Expand 3(tan(x)+1)(tan(x)−1):3tan2(x)−3
Expand (tan(x)+1)(tan(x)−1):tan2(x)−1
(tan(x)+1)(tan(x)−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=tan(x),b=1=tan2(x)−12
Apply rule 1a=112=1=tan2(x)−1
=3(tan2(x)−1)
Expand 3(tan2(x)−1):3tan2(x)−3
3(tan2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=3,b=tan2(x),c=1=3tan2(x)−3⋅1
Multiply the numbers: 3⋅1=3=3tan2(x)−3
=3tan2(x)−3
=6tan2(x)+3tan2(x)−3
Add similar elements: 6tan2(x)+3tan2(x)=9tan2(x)=9tan2(x)−3
=−tan(x)(tan(x)+1)(tan(x)−1)9tan2(x)−3​
=−tan(x)(tan(x)+1)(tan(x)−1)9tan2(x)−3​
−(−1+tan(x))(1+tan(x))tan(x)−3+9tan2(x)​=0
Solve by substitution
−(−1+tan(x))(1+tan(x))tan(x)−3+9tan2(x)​=0
Let: tan(x)=u−(−1+u)(1+u)u−3+9u2​=0
−(−1+u)(1+u)u−3+9u2​=0:u=31​​,u=−31​​
−(−1+u)(1+u)u−3+9u2​=0
g(x)f(x)​=0⇒f(x)=0−3+9u2=0
Solve −3+9u2=0:u=31​​,u=−31​​
−3+9u2=0
Move 3to the right side
−3+9u2=0
Add 3 to both sides−3+9u2+3=0+3
Simplify9u2=3
9u2=3
Divide both sides by 9
9u2=3
Divide both sides by 999u2​=93​
Simplifyu2=31​
u2=31​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=31​​,u=−31​​
u=31​​,u=−31​​
Verify Solutions
Find undefined (singularity) points:u=1,u=−1,u=0
Take the denominator(s) of −(−1+u)(1+u)u−3+9u2​ and compare to zero
Solve (−1+u)(1+u)u=0:u=1,u=−1,u=0
(−1+u)(1+u)u=0
Using the Zero Factor Principle: If ab=0then a=0or b=0−1+u=0or1+u=0oru=0
Solve −1+u=0:u=1
−1+u=0
Move 1to the right side
−1+u=0
Add 1 to both sides−1+u+1=0+1
Simplifyu=1
u=1
Solve 1+u=0:u=−1
1+u=0
Move 1to the right side
1+u=0
Subtract 1 from both sides1+u−1=0−1
Simplifyu=−1
u=−1
The solutions areu=1,u=−1,u=0
The following points are undefinedu=1,u=−1,u=0
Combine undefined points with solutions:
u=31​​,u=−31​​
Substitute back u=tan(x)tan(x)=31​​,tan(x)=−31​​
tan(x)=31​​,tan(x)=−31​​
tan(x)=31​​:x=arctan(31​​)+πn
tan(x)=31​​
Apply trig inverse properties
tan(x)=31​​
General solutions for tan(x)=31​​tan(x)=a⇒x=arctan(a)+πnx=arctan(31​​)+πn
x=arctan(31​​)+πn
tan(x)=−31​​:x=arctan(−31​​)+πn
tan(x)=−31​​
Apply trig inverse properties
tan(x)=−31​​
General solutions for tan(x)=−31​​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−31​​)+πn
x=arctan(−31​​)+πn
Combine all the solutionsx=arctan(31​​)+πn,x=arctan(−31​​)+πn
Show solutions in decimal formx=0.52359…+πn,x=−0.52359…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)=(1/4)(36)/(sin(110))=(15)/(sin(x))6sin(x/2)+6cos(x)=0cos(x)=0.925(sin(A))/9 =(sin(108))/6

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tan(2x)-3cot(x)=0 ?

    The general solution for 3tan(2x)-3cot(x)=0 is x=0.52359…+pin,x=-0.52359…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024