Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1+4cos(θ))^2=(sqrt(3)sin(θ))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(1+4cos(θ))2=(3​sin(θ))

Solution

θ=1.49220…+2πn,θ=2.15388…+2πn
+1
Degrees
θ=85.49705…∘+360∘n,θ=123.40880…∘+360∘n
Solution steps
(1+4cos(θ))2=(3​sin(θ))
Square both sides((1+4cos(θ))2)2=(3​sin(θ))2
Subtract (3​sin(θ))2 from both sides(1+4cos(θ))4−3sin2(θ)=0
Rewrite using trig identities
(1+4cos(θ))4−3sin2(θ)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(1+4cos(θ))4−3(1−cos2(θ))
Simplify (1+4cos(θ))4−3(1−cos2(θ)):256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
(1+4cos(θ))4−3(1−cos2(θ))
(1+4cos(θ))4:1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)
Apply binomial theorem: (a+b)n=i=0∑n​(in​)a(n−i)bia=1,b=4cos(θ)
=i=0∑4​(i4​)⋅1(4−i)(4cos(θ))i
Expand summation
(in​)=i!(n−i)!n!​
i=0:0!(4−0)!4!​14(4cos(θ))0
i=1:1!(4−1)!4!​13(4cos(θ))1
i=2:2!(4−2)!4!​12(4cos(θ))2
i=3:3!(4−3)!4!​11(4cos(θ))3
i=4:4!(4−4)!4!​10(4cos(θ))4
=0!(4−0)!4!​⋅14(4cos(θ))0+1!(4−1)!4!​⋅13(4cos(θ))1+2!(4−2)!4!​⋅12(4cos(θ))2+3!(4−3)!4!​⋅11(4cos(θ))3+4!(4−4)!4!​⋅10(4cos(θ))4
=0!(4−0)!4!​⋅14(4cos(θ))0+1!(4−1)!4!​⋅13(4cos(θ))1+2!(4−2)!4!​⋅12(4cos(θ))2+3!(4−3)!4!​⋅11(4cos(θ))3+4!(4−4)!4!​⋅10(4cos(θ))4
0!(4−0)!4!​⋅14(4cos(θ))0=1
0!(4−0)!4!​⋅14(4cos(θ))0
Apply rule 1a=114=1=1⋅0!(4−0)!4!​(4cos(θ))0
Apply rule a0=1,a=0(4cos(θ))0=1=1⋅1⋅0!(4−0)!4!​
0!(4−0)!4!​=1
0!(4−0)!4!​
0!(4−0)!=4!
0!(4−0)!
Subtract the numbers: 4−0=4=0!⋅4!
Apply factorial rule: 0!=1=1⋅4!
Multiply: 1⋅4!=4!=4!
=4!4!​
Apply rule aa​=1=1
=1⋅1⋅1
Multiply the numbers: 1⋅1⋅1=1=1
Simplify 1!(4−1)!4!​⋅13(4cos(θ))1:16cos(θ)
1!(4−1)!4!​⋅13(4cos(θ))1
Apply rule 1a=113=1=1⋅1!(4−1)!4!​(4cos(θ))1
Apply rule a1=a(4cos(θ))1=4cos(θ)=1⋅4⋅1!(4−1)!4!​cos(θ)
Multiply fractions: a⋅cb​=ca⋅b​=1⋅1!(4−1)!4⋅4!cos(θ)​
Simplify 1!(4−1)!4!⋅4cos(θ)​:16cos(θ)
1!(4−1)!4!⋅4cos(θ)​
Subtract the numbers: 4−1=3=1!⋅3!4⋅4!cos(θ)​
Cancel the factorials: (n−m)!n!​=n⋅(n−1)⋯(n−m+1),n>m3!4!​=4=1!4⋅4cos(θ)​
Refine=1!16cos(θ)​
Apply factorial rule: n!=1⋅2⋅3⋅…⋅n1!=1=116cos(θ)​
Apply rule 1a​=a=16cos(θ)
=1⋅16cos(θ)
Multiply the numbers: 1⋅16=16=16cos(θ)
Simplify 2!(4−2)!4!​⋅12(4cos(θ))2:96cos2(θ)
2!(4−2)!4!​⋅12(4cos(θ))2
Apply rule 1a=112=1=1⋅2!(4−2)!4!​(4cos(θ))2
Multiply fractions: a⋅cb​=ca⋅b​=1⋅2!(4−2)!4!(4cos(θ))2​
Simplify 2!(4−2)!4!(4cos(θ))2​:96cos2(θ)
2!(4−2)!4!(4cos(θ))2​
Subtract the numbers: 4−2=2=2!⋅2!4!(4cos(θ))2​
Cancel the factorials: (n−m)!n!​=n⋅(n−1)⋯(n−m+1),n>m2!4!​=4⋅3=2!4⋅3(4cos(θ))2​
Refine=2!12(4cos(θ))2​
(4cos(θ))2=42cos2(θ)
(4cos(θ))2
Apply exponent rule: (a⋅b)n=anbn=42cos2(θ)
=2!42⋅12cos2(θ)​
12⋅42cos2(θ)=192cos2(θ)
12⋅42cos2(θ)
42=16=12⋅16cos2(θ)
Multiply the numbers: 12⋅16=192=192cos2(θ)
=2!192cos2(θ)​
2!=2
2!
Apply factorial rule: n!=1⋅2⋅3⋅…⋅n2!=1⋅2=1⋅2
Multiply the numbers: 1⋅2=2=2
=2192cos2(θ)​
Divide the numbers: 2192​=96=96cos2(θ)
=1⋅96cos2(θ)
Multiply the numbers: 1⋅96=96=96cos2(θ)
Simplify 3!(4−3)!4!​⋅11(4cos(θ))3:256cos3(θ)
3!(4−3)!4!​⋅11(4cos(θ))3
Apply rule 1a=111=1=1⋅3!(4−3)!4!​(4cos(θ))3
Multiply fractions: a⋅cb​=ca⋅b​=1⋅3!(4−3)!4!(4cos(θ))3​
Simplify 3!(4−3)!4!(4cos(θ))3​:256cos3(θ)
3!(4−3)!4!(4cos(θ))3​
Subtract the numbers: 4−3=1=3!⋅1!4!(4cos(θ))3​
Cancel the factorials: (n−m)!n!​=n⋅(n−1)⋯(n−m+1),n>m3!4!​=4=1!4(4cos(θ))3​
(4cos(θ))3=43cos3(θ)
(4cos(θ))3
Apply exponent rule: (a⋅b)n=anbn=43cos3(θ)
=1!43⋅4cos3(θ)​
4⋅43cos3(θ)=44cos3(θ)
4⋅43cos3(θ)
Apply exponent rule: ab⋅ac=ab+c4⋅43=41+3=41+3cos3(θ)
Add the numbers: 1+3=4=44cos3(θ)
=1!44cos3(θ)​
44=256=1!256cos3(θ)​
Apply factorial rule: n!=1⋅2⋅3⋅…⋅n1!=1=1256cos3(θ)​
Apply rule 1a​=a=256cos3(θ)
=1⋅256cos3(θ)
Multiply the numbers: 1⋅256=256=256cos3(θ)
Simplify 4!(4−4)!4!​⋅10(4cos(θ))4:256cos4(θ)
4!(4−4)!4!​⋅10(4cos(θ))4
Apply rule 1a=110=1=1⋅4!(4−4)!4!​(4cos(θ))4
Multiply fractions: a⋅cb​=ca⋅b​=1⋅4!(4−4)!4!(4cos(θ))4​
Cancel the common factor: 4!=1⋅(4−4)!(4cos(θ))4​
Simplify (4−4)!(4cos(θ))4​:256cos4(θ)
(4−4)!(4cos(θ))4​
(4−4)!=1
(4−4)!
Subtract the numbers: 4−4=0=0!
Apply factorial rule: 0!=1=1
=1(4cos(θ))4​
Apply rule 1a​=a=(4cos(θ))4
Apply exponent rule: (a⋅b)n=anbn=44cos4(θ)
44=256=256cos4(θ)
=1⋅256cos4(θ)
Multiply the numbers: 1⋅256=256=256cos4(θ)
=1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)
=1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)−3(1−cos2(θ))
Expand −3(1−cos2(θ)):−3+3cos2(θ)
−3(1−cos2(θ))
Apply the distributive law: a(b−c)=ab−aca=−3,b=1,c=cos2(θ)=−3⋅1−(−3)cos2(θ)
Apply minus-plus rules−(−a)=a=−3⋅1+3cos2(θ)
Multiply the numbers: 3⋅1=3=−3+3cos2(θ)
=1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)−3+3cos2(θ)
Simplify 1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)−3+3cos2(θ):256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
1+16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)−3+3cos2(θ)
Group like terms=16cos(θ)+96cos2(θ)+256cos3(θ)+256cos4(θ)+3cos2(θ)+1−3
Add similar elements: 96cos2(θ)+3cos2(θ)=99cos2(θ)=16cos(θ)+99cos2(θ)+256cos3(θ)+256cos4(θ)+1−3
Add/Subtract the numbers: 1−3=−2=256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
=256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
=256cos4(θ)+256cos3(θ)+99cos2(θ)+16cos(θ)−2
−2+16cos(θ)+256cos3(θ)+256cos4(θ)+99cos2(θ)=0
Solve by substitution
−2+16cos(θ)+256cos3(θ)+256cos4(θ)+99cos2(θ)=0
Let: cos(θ)=u−2+16u+256u3+256u4+99u2=0
−2+16u+256u3+256u4+99u2=0:u≈0.07851…,u≈−0.55060…
−2+16u+256u3+256u4+99u2=0
Write in the standard form an​xn+…+a1​x+a0​=0256u4+256u3+99u2+16u−2=0
Find one solution for 256u4+256u3+99u2+16u−2=0 using Newton-Raphson:u≈0.07851…
256u4+256u3+99u2+16u−2=0
Newton-Raphson Approximation Definition
f(u)=256u4+256u3+99u2+16u−2
Find f′(u):1024u3+768u2+198u+16
dud​(256u4+256u3+99u2+16u−2)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(256u4)+dud​(256u3)+dud​(99u2)+dud​(16u)−dud​(2)
dud​(256u4)=1024u3
dud​(256u4)
Take the constant out: (a⋅f)′=a⋅f′=256dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=256⋅4u4−1
Simplify=1024u3
dud​(256u3)=768u2
dud​(256u3)
Take the constant out: (a⋅f)′=a⋅f′=256dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=256⋅3u3−1
Simplify=768u2
dud​(99u2)=198u
dud​(99u2)
Take the constant out: (a⋅f)′=a⋅f′=99dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=99⋅2u2−1
Simplify=198u
dud​(16u)=16
dud​(16u)
Take the constant out: (a⋅f)′=a⋅f′=16dudu​
Apply the common derivative: dudu​=1=16⋅1
Simplify=16
dud​(2)=0
dud​(2)
Derivative of a constant: dxd​(a)=0=0
=1024u3+768u2+198u+16−0
Simplify=1024u3+768u2+198u+16
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.125:Δu1​=0.125
f(u0​)=256⋅04+256⋅03+99⋅02+16⋅0−2=−2f′(u0​)=1024⋅03+768⋅02+198⋅0+16=16u1​=0.125
Δu1​=∣0.125−0∣=0.125Δu1​=0.125
u2​=0.08647…:Δu2​=0.03852…
f(u1​)=256⋅0.1254+256⋅0.1253+99⋅0.1252+16⋅0.125−2=2.109375f′(u1​)=1024⋅0.1253+768⋅0.1252+198⋅0.125+16=54.75u2​=0.08647…
Δu2​=∣0.08647…−0.125∣=0.03852…Δu2​=0.03852…
u3​=0.07878…:Δu3​=0.00768…
f(u2​)=256⋅0.08647…4+256⋅0.08647…3+99⋅0.08647…2+16⋅0.08647…−2=0.30367…f′(u2​)=1024⋅0.08647…3+768⋅0.08647…2+198⋅0.08647…+16=39.52642…u3​=0.07878…
Δu3​=∣0.07878…−0.08647…∣=0.00768…Δu3​=0.00768…
u4​=0.07851…:Δu4​=0.00027…
f(u3​)=256⋅0.07878…4+256⋅0.07878…3+99⋅0.07878…2+16⋅0.07878…−2=0.01028…f′(u3​)=1024⋅0.07878…3+768⋅0.07878…2+198⋅0.07878…+16=36.86880…u4​=0.07851…
Δu4​=∣0.07851…−0.07878…∣=0.00027…Δu4​=0.00027…
u5​=0.07851…:Δu5​=3.57619E−7
f(u4​)=256⋅0.07851…4+256⋅0.07851…3+99⋅0.07851…2+16⋅0.07851…−2=0.00001…f′(u4​)=1024⋅0.07851…3+768⋅0.07851…2+198⋅0.07851…+16=36.77455…u5​=0.07851…
Δu5​=∣0.07851…−0.07851…∣=3.57619E−7Δu5​=3.57619E−7
u≈0.07851…
Apply long division:u−0.07851…256u4+256u3+99u2+16u−2​=256u3+276.09864…u2+120.67659…u+25.47435…
256u3+276.09864…u2+120.67659…u+25.47435…≈0
Find one solution for 256u3+276.09864…u2+120.67659…u+25.47435…=0 using Newton-Raphson:u≈−0.55060…
256u3+276.09864…u2+120.67659…u+25.47435…=0
Newton-Raphson Approximation Definition
f(u)=256u3+276.09864…u2+120.67659…u+25.47435…
Find f′(u):768u2+552.19728…u+120.67659…
dud​(256u3+276.09864…u2+120.67659…u+25.47435…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(256u3)+dud​(276.09864…u2)+dud​(120.67659…u)+dud​(25.47435…)
dud​(256u3)=768u2
dud​(256u3)
Take the constant out: (a⋅f)′=a⋅f′=256dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=256⋅3u3−1
Simplify=768u2
dud​(276.09864…u2)=552.19728…u
dud​(276.09864…u2)
Take the constant out: (a⋅f)′=a⋅f′=276.09864…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=276.09864…⋅2u2−1
Simplify=552.19728…u
dud​(120.67659…u)=120.67659…
dud​(120.67659…u)
Take the constant out: (a⋅f)′=a⋅f′=120.67659…dudu​
Apply the common derivative: dudu​=1=120.67659…⋅1
Simplify=120.67659…
dud​(25.47435…)=0
dud​(25.47435…)
Derivative of a constant: dxd​(a)=0=0
=768u2+552.19728…u+120.67659…+0
Simplify=768u2+552.19728…u+120.67659…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=−0.21109…:Δu1​=0.21109…
f(u0​)=256⋅03+276.09864…⋅02+120.67659…⋅0+25.47435…=25.47435…f′(u0​)=768⋅02+552.19728…⋅0+120.67659…=120.67659…u1​=−0.21109…
Δu1​=∣−0.21109…−0∣=0.21109…Δu1​=0.21109…
u2​=−0.46923…:Δu2​=0.25813…
f(u1​)=256(−0.21109…)3+276.09864…(−0.21109…)2+120.67659…(−0.21109…)+25.47435…=9.89525…f′(u1​)=768(−0.21109…)2+552.19728…(−0.21109…)+120.67659…=38.33318…u2​=−0.46923…
Δu2​=∣−0.46923…−(−0.21109…)∣=0.25813…Δu2​=0.25813…
u3​=−0.57330…:Δu3​=0.10407…
f(u2​)=256(−0.46923…)3+276.09864…(−0.46923…)2+120.67659…(−0.46923…)+25.47435…=3.19139…f′(u2​)=768(−0.46923…)2+552.19728…(−0.46923…)+120.67659…=30.66554…u3​=−0.57330…
Δu3​=∣−0.57330…−(−0.46923…)∣=0.10407…Δu3​=0.10407…
u4​=−0.55205…:Δu4​=0.02125…
f(u3​)=256(−0.57330…)3+276.09864…(−0.57330…)2+120.67659…(−0.57330…)+25.47435…=−1.20130…f′(u3​)=768(−0.57330…)2+552.19728…(−0.57330…)+120.67659…=56.52438…u4​=−0.55205…
Δu4​=∣−0.55205…−(−0.57330…)∣=0.02125…Δu4​=0.02125…
u5​=−0.55061…:Δu5​=0.00143…
f(u4​)=256(−0.55205…)3+276.09864…(−0.55205…)2+120.67659…(−0.55205…)+25.47435…=−0.07170…f′(u4​)=768(−0.55205…)2+552.19728…(−0.55205…)+120.67659…=49.89187…u5​=−0.55061…
Δu5​=∣−0.55061…−(−0.55205…)∣=0.00143…Δu5​=0.00143…
u6​=−0.55060…:Δu6​=6.15991E−6
f(u5​)=256(−0.55061…)3+276.09864…(−0.55061…)2+120.67659…(−0.55061…)+25.47435…=−0.00030…f′(u5​)=768(−0.55061…)2+552.19728…(−0.55061…)+120.67659…=49.46837…u6​=−0.55060…
Δu6​=∣−0.55060…−(−0.55061…)∣=6.15991E−6Δu6​=6.15991E−6
u7​=−0.55060…:Δu7​=1.12585E−10
f(u6​)=256(−0.55060…)3+276.09864…(−0.55060…)2+120.67659…(−0.55060…)+25.47435…=−5.56919E−9f′(u6​)=768(−0.55060…)2+552.19728…(−0.55060…)+120.67659…=49.46656…u7​=−0.55060…
Δu7​=∣−0.55060…−(−0.55060…)∣=1.12585E−10Δu7​=1.12585E−10
u≈−0.55060…
Apply long division:u+0.55060…256u3+276.09864…u2+120.67659…u+25.47435…​=256u2+135.14273…u+46.26578…
256u2+135.14273…u+46.26578…≈0
Find one solution for 256u2+135.14273…u+46.26578…=0 using Newton-Raphson:No Solution for u∈R
256u2+135.14273…u+46.26578…=0
Newton-Raphson Approximation Definition
f(u)=256u2+135.14273…u+46.26578…
Find f′(u):512u+135.14273…
dud​(256u2+135.14273…u+46.26578…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(256u2)+dud​(135.14273…u)+dud​(46.26578…)
dud​(256u2)=512u
dud​(256u2)
Take the constant out: (a⋅f)′=a⋅f′=256dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=256⋅2u2−1
Simplify=512u
dud​(135.14273…u)=135.14273…
dud​(135.14273…u)
Take the constant out: (a⋅f)′=a⋅f′=135.14273…dudu​
Apply the common derivative: dudu​=1=135.14273…⋅1
Simplify=135.14273…
dud​(46.26578…)=0
dud​(46.26578…)
Derivative of a constant: dxd​(a)=0=0
=512u+135.14273…+0
Simplify=512u+135.14273…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=−0.34234…:Δu1​=0.34234…
f(u0​)=256⋅02+135.14273…⋅0+46.26578…=46.26578…f′(u0​)=512⋅0+135.14273…=135.14273…u1​=−0.34234…
Δu1​=∣−0.34234…−0∣=0.34234…Δu1​=0.34234…
u2​=0.40514…:Δu2​=0.74749…
f(u1​)=256(−0.34234…)2+135.14273…(−0.34234…)+46.26578…=30.00367…f′(u1​)=512(−0.34234…)+135.14273…=−40.13921…u2​=0.40514…
Δu2​=∣0.40514…−(−0.34234…)∣=0.74749…Δu2​=0.74749…
u3​=−0.01239…:Δu3​=0.41753…
f(u2​)=256⋅0.40514…2+135.14273…⋅0.40514…+46.26578…=143.03790…f′(u2​)=512⋅0.40514…+135.14273…=342.57584…u3​=−0.01239…
Δu3​=∣−0.01239…−0.40514…∣=0.41753…Δu3​=0.41753…
u4​=−0.35890…:Δu4​=0.34651…
f(u3​)=256(−0.01239…)2+135.14273…(−0.01239…)+46.26578…=44.63019…f′(u3​)=512(−0.01239…)+135.14273…=128.79718…u4​=−0.35890…
Δu4​=∣−0.35890…−(−0.01239…)∣=0.34651…Δu4​=0.34651…
u5​=0.27333…:Δu5​=0.63223…
f(u4​)=256(−0.35890…)2+135.14273…(−0.35890…)+46.26578…=30.73865…f′(u4​)=512(−0.35890…)+135.14273…=−48.61865…u5​=0.27333…
Δu5​=∣0.27333…−(−0.35890…)∣=0.63223…Δu5​=0.63223…
u6​=−0.09865…:Δu6​=0.37199…
f(u5​)=256⋅0.27333…2+135.14273…⋅0.27333…+46.26578…=102.33017…f′(u5​)=512⋅0.27333…+135.14273…=275.08816…u6​=−0.09865…
Δu6​=∣−0.09865…−0.27333…∣=0.37199…Δu6​=0.37199…
u7​=−0.51724…:Δu7​=0.41858…
f(u6​)=256(−0.09865…)2+135.14273…(−0.09865…)+46.26578…=35.42449…f′(u6​)=512(−0.09865…)+135.14273…=84.62903…u7​=−0.51724…
Δu7​=∣−0.51724…−(−0.09865…)∣=0.41858…Δu7​=0.41858…
u8​=−0.17137…:Δu8​=0.34586…
f(u7​)=256(−0.51724…)2+135.14273…(−0.51724…)+46.26578…=44.85474…f′(u7​)=512(−0.51724…)+135.14273…=−129.68675…u8​=−0.17137…
Δu8​=∣−0.17137…−(−0.51724…)∣=0.34586…Δu8​=0.34586…
u9​=−0.81747…:Δu9​=0.64609…
f(u8​)=256(−0.17137…)2+135.14273…(−0.17137…)+46.26578…=30.62425…f′(u8​)=512(−0.17137…)+135.14273…=47.39863…u9​=−0.81747…
Δu9​=∣−0.81747…−(−0.17137…)∣=0.64609…Δu9​=0.64609…
Cannot find solution
The solutions areu≈0.07851…,u≈−0.55060…
Substitute back u=cos(θ)cos(θ)≈0.07851…,cos(θ)≈−0.55060…
cos(θ)≈0.07851…,cos(θ)≈−0.55060…
cos(θ)=0.07851…:θ=arccos(0.07851…)+2πn,θ=2π−arccos(0.07851…)+2πn
cos(θ)=0.07851…
Apply trig inverse properties
cos(θ)=0.07851…
General solutions for cos(θ)=0.07851…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(0.07851…)+2πn,θ=2π−arccos(0.07851…)+2πn
θ=arccos(0.07851…)+2πn,θ=2π−arccos(0.07851…)+2πn
cos(θ)=−0.55060…:θ=arccos(−0.55060…)+2πn,θ=−arccos(−0.55060…)+2πn
cos(θ)=−0.55060…
Apply trig inverse properties
cos(θ)=−0.55060…
General solutions for cos(θ)=−0.55060…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnθ=arccos(−0.55060…)+2πn,θ=−arccos(−0.55060…)+2πn
θ=arccos(−0.55060…)+2πn,θ=−arccos(−0.55060…)+2πn
Combine all the solutionsθ=arccos(0.07851…)+2πn,θ=2π−arccos(0.07851…)+2πn,θ=arccos(−0.55060…)+2πn,θ=−arccos(−0.55060…)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into (1+4cos(θ))2=3​sin(θ)
Remove the ones that don't agree with the equation.
Check the solution arccos(0.07851…)+2πn:True
arccos(0.07851…)+2πn
Plug in n=1arccos(0.07851…)+2π1
For (1+4cos(θ))2=3​sin(θ)plug inθ=arccos(0.07851…)+2π1(1+4cos(arccos(0.07851…)+2π1))2=3​sin(arccos(0.07851…)+2π1)
Refine1.72670…=1.72670…
⇒True
Check the solution 2π−arccos(0.07851…)+2πn:False
2π−arccos(0.07851…)+2πn
Plug in n=12π−arccos(0.07851…)+2π1
For (1+4cos(θ))2=3​sin(θ)plug inθ=2π−arccos(0.07851…)+2π1(1+4cos(2π−arccos(0.07851…)+2π1))2=3​sin(2π−arccos(0.07851…)+2π1)
Refine1.72670…=−1.72670…
⇒False
Check the solution arccos(−0.55060…)+2πn:True
arccos(−0.55060…)+2πn
Plug in n=1arccos(−0.55060…)+2π1
For (1+4cos(θ))2=3​sin(θ)plug inθ=arccos(−0.55060…)+2π1(1+4cos(arccos(−0.55060…)+2π1))2=3​sin(arccos(−0.55060…)+2π1)
Refine1.44585…=1.44585…
⇒True
Check the solution −arccos(−0.55060…)+2πn:False
−arccos(−0.55060…)+2πn
Plug in n=1−arccos(−0.55060…)+2π1
For (1+4cos(θ))2=3​sin(θ)plug inθ=−arccos(−0.55060…)+2π1(1+4cos(−arccos(−0.55060…)+2π1))2=3​sin(−arccos(−0.55060…)+2π1)
Refine1.44585…=−1.44585…
⇒False
θ=arccos(0.07851…)+2πn,θ=arccos(−0.55060…)+2πn
Show solutions in decimal formθ=1.49220…+2πn,θ=2.15388…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)-(cos(θ))/5 =0.6377sin(4x)=cos(4x)2cos^2(x)+9cos(x)+4=0cos(6x)=sin(x-1)tan(θ)= 72/65

Frequently Asked Questions (FAQ)

  • What is the general solution for (1+4cos(θ))^2=(sqrt(3)sin(θ)) ?

    The general solution for (1+4cos(θ))^2=(sqrt(3)sin(θ)) is θ=1.49220…+2pin,θ=2.15388…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024