Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

50/33 =(sin(x))/(sin(120-x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3350​=sin(120∘−x)sin(x)​

Solution

x=1.38810…+180∘n
+1
Radians
x=1.38810…+πn
Solution steps
3350​=sin(120∘−x)sin(x)​
Switch sidessin(120∘−x)sin(x)​=3350​
Rewrite using trig identities
sin(120∘−x)sin(x)​=3350​
Rewrite using trig identities
sin(120∘−x)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(120∘)cos(x)−cos(120∘)sin(x)
Simplify sin(120∘)cos(x)−cos(120∘)sin(x):23​​cos(x)+21​sin(x)
sin(120∘)cos(x)−cos(120∘)sin(x)
Simplify sin(120∘):23​​
sin(120∘)
Use the following trivial identity:sin(120∘)=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=23​​cos(x)−cos(120∘)sin(x)
Simplify cos(120∘):−21​
cos(120∘)
Use the following trivial identity:cos(120∘)=−21​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−21​
=23​​cos(x)−(−21​sin(x))
Apply rule −(−a)=a=23​​cos(x)+21​sin(x)
=23​​cos(x)+21​sin(x)
23​​cos(x)+21​sin(x)sin(x)​=3350​
23​​cos(x)+21​sin(x)sin(x)​=3350​
Subtract 3350​ from both sides23​​cos(x)+21​sin(x)sin(x)​−3350​=0
Simplify 23​​cos(x)+21​sin(x)sin(x)​−3350​:33(3​cos(x)+sin(x))16sin(x)−503​cos(x)​
23​​cos(x)+21​sin(x)sin(x)​−3350​
23​​cos(x)+21​sin(x)sin(x)​=3​cos(x)+sin(x)2sin(x)​
23​​cos(x)+21​sin(x)sin(x)​
23​​cos(x)=23​cos(x)​
23​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=23​cos(x)​
21​sin(x)=2sin(x)​
21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=2sin(x)​
=23​cos(x)​+2sin(x)​sin(x)​
Combine the fractions 23​cos(x)​+2sin(x)​:23​cos(x)+sin(x)​
Apply rule ca​±cb​=ca±b​=23​cos(x)+sin(x)​
=23​cos(x)+sin(x)​sin(x)​
Apply the fraction rule: cb​a​=ba⋅c​=3​cos(x)+sin(x)sin(x)⋅2​
=3​cos(x)+sin(x)2sin(x)​−3350​
Least Common Multiplier of 3​cos(x)+sin(x),33:33(3​cos(x)+sin(x))
3​cos(x)+sin(x),33
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 3​cos(x)+sin(x) or 33=33(3​cos(x)+sin(x))
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 33(3​cos(x)+sin(x))
For 3​cos(x)+sin(x)sin(x)⋅2​:multiply the denominator and numerator by 333​cos(x)+sin(x)sin(x)⋅2​=(3​cos(x)+sin(x))⋅33sin(x)⋅2⋅33​=33(3​cos(x)+sin(x))66sin(x)​
For 3350​:multiply the denominator and numerator by 3​cos(x)+sin(x)3350​=33(3​cos(x)+sin(x))50(3​cos(x)+sin(x))​
=33(3​cos(x)+sin(x))66sin(x)​−33(3​cos(x)+sin(x))50(3​cos(x)+sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33(3​cos(x)+sin(x))66sin(x)−50(3​cos(x)+sin(x))​
Expand 66sin(x)−50(3​cos(x)+sin(x)):16sin(x)−503​cos(x)
66sin(x)−50(3​cos(x)+sin(x))
Expand −50(3​cos(x)+sin(x)):−503​cos(x)−50sin(x)
−50(3​cos(x)+sin(x))
Apply the distributive law: a(b+c)=ab+aca=−50,b=3​cos(x),c=sin(x)=−503​cos(x)+(−50)sin(x)
Apply minus-plus rules+(−a)=−a=−503​cos(x)−50sin(x)
=66sin(x)−503​cos(x)−50sin(x)
Add similar elements: 66sin(x)−50sin(x)=16sin(x)=16sin(x)−503​cos(x)
=33(3​cos(x)+sin(x))16sin(x)−503​cos(x)​
33(3​cos(x)+sin(x))16sin(x)−503​cos(x)​=0
g(x)f(x)​=0⇒f(x)=016sin(x)−503​cos(x)=0
Rewrite using trig identities
16sin(x)−503​cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)16sin(x)−503​cos(x)​=cos(x)0​
Simplifycos(x)16sin(x)​−503​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)16tan(x)−503​=0
16tan(x)−503​=0
Move 503​to the right side
16tan(x)−503​=0
Add 503​ to both sides16tan(x)−503​+503​=0+503​
Simplify16tan(x)=503​
16tan(x)=503​
Divide both sides by 16
16tan(x)=503​
Divide both sides by 161616tan(x)​=16503​​
Simplifytan(x)=8253​​
tan(x)=8253​​
Apply trig inverse properties
tan(x)=8253​​
General solutions for tan(x)=8253​​tan(x)=a⇒x=arctan(a)+180∘nx=arctan(8253​​)+180∘n
x=arctan(8253​​)+180∘n
Show solutions in decimal formx=1.38810…+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(x)csc(x)=cos(x)2tan(x)=sqrt(2)0.5=cos(pi/6 x)cos^2(x)= pi/4cot^2(θ)+csc(θ)=1,0<= θ<2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for 50/33 =(sin(x))/(sin(120-x)) ?

    The general solution for 50/33 =(sin(x))/(sin(120-x)) is x=1.38810…+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024