Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

88.2sin(x)-12.78=0.1*88.2cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

88.2sin(x)−12.78=0.1⋅88.2cos(x)

Solution

x=0.24435…+2πn,x=π−0.04501…+2πn
+1
Degrees
x=14.00032…∘+360∘n,x=177.42086…∘+360∘n
Solution steps
88.2sin(x)−12.78=0.1⋅88.2cos(x)
Square both sides(88.2sin(x)−12.78)2=(0.1⋅88.2cos(x))2
Subtract (0.188.2cos(x))2 from both sides(88.2sin(x)−12.78)2−77.7924cos2(x)=0
Rewrite using trig identities
(−12.78+88.2sin(x))2−77.7924cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(−12.78+88.2sin(x))2−77.7924(1−sin2(x))
Simplify (−12.78+88.2sin(x))2−77.7924(1−sin2(x)):7857.0324sin2(x)−2254.392sin(x)+85.536
(−12.78+88.2sin(x))2−77.7924(1−sin2(x))
(−12.78+88.2sin(x))2:163.3284−2254.392sin(x)+7779.24sin2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−12.78,b=88.2sin(x)
=(−12.78)2+2(−12.78)⋅88.2sin(x)+(88.2sin(x))2
Simplify (−12.78)2+2(−12.78)⋅88.2sin(x)+(88.2sin(x))2:163.3284−2254.392sin(x)+7779.24sin2(x)
(−12.78)2+2(−12.78)⋅88.2sin(x)+(88.2sin(x))2
Remove parentheses: (−a)=−a=(−12.78)2−2⋅12.78⋅88.2sin(x)+(88.2sin(x))2
(−12.78)2=163.3284
(−12.78)2
Apply exponent rule: (−a)n=an,if n is even(−12.78)2=12.782=12.782
12.782=163.3284=163.3284
2⋅12.78⋅88.2sin(x)=2254.392sin(x)
2⋅12.78⋅88.2sin(x)
Multiply the numbers: 2⋅12.78⋅88.2=2254.392=2254.392sin(x)
(88.2sin(x))2=7779.24sin2(x)
(88.2sin(x))2
Apply exponent rule: (a⋅b)n=anbn=88.22sin2(x)
88.22=7779.24=7779.24sin2(x)
=163.3284−2254.392sin(x)+7779.24sin2(x)
=163.3284−2254.392sin(x)+7779.24sin2(x)
=163.3284−2254.392sin(x)+7779.24sin2(x)−77.7924(1−sin2(x))
Expand −77.7924(1−sin2(x)):−77.7924+77.7924sin2(x)
−77.7924(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−77.7924,b=1,c=sin2(x)=−77.7924⋅1−(−77.7924)sin2(x)
Apply minus-plus rules−(−a)=a=−1⋅77.7924+77.7924sin2(x)
Multiply the numbers: 1⋅77.7924=77.7924=−77.7924+77.7924sin2(x)
=163.3284−2254.392sin(x)+7779.24sin2(x)−77.7924+77.7924sin2(x)
Simplify 163.3284−2254.392sin(x)+7779.24sin2(x)−77.7924+77.7924sin2(x):7857.0324sin2(x)−2254.392sin(x)+85.536
163.3284−2254.392sin(x)+7779.24sin2(x)−77.7924+77.7924sin2(x)
Group like terms=−2254.392sin(x)+7779.24sin2(x)+77.7924sin2(x)+163.3284−77.7924
Add similar elements: 7779.24sin2(x)+77.7924sin2(x)=7857.0324sin2(x)=−2254.392sin(x)+7857.0324sin2(x)+163.3284−77.7924
Add/Subtract the numbers: 163.3284−77.7924=85.536=7857.0324sin2(x)−2254.392sin(x)+85.536
=7857.0324sin2(x)−2254.392sin(x)+85.536
=7857.0324sin2(x)−2254.392sin(x)+85.536
85.536−2254.392sin(x)+7857.0324sin2(x)=0
Solve by substitution
85.536−2254.392sin(x)+7857.0324sin2(x)=0
Let: sin(x)=u85.536−2254.392u+7857.0324u2=0
85.536−2254.392u+7857.0324u2=0:u=20.28692…+0.03878…​​,u=20.28692…−0.03878…​​
85.536−2254.392u+7857.0324u2=0
Divide both sides by 7857.03247857.032485.536​−7857.03242254.392u​+7857.03247857.0324u2​=7857.03240​
Write in the standard form ax2+bx+c=0u2−0.28692…u+0.01088…=0
Solve with the quadratic formula
u2−0.28692…u+0.01088…=0
Quadratic Equation Formula:
For a=1,b=−0.28692…,c=0.01088…u1,2​=2⋅1−(−0.28692…)±(−0.28692…)2−4⋅1⋅0.01088…​​
u1,2​=2⋅1−(−0.28692…)±(−0.28692…)2−4⋅1⋅0.01088…​​
(−0.28692…)2−4⋅1⋅0.01088…​=0.03878…​
(−0.28692…)2−4⋅1⋅0.01088…​
Apply exponent rule: (−a)n=an,if n is even(−0.28692…)2=0.28692…2=0.28692…2−4⋅1⋅0.01088…​
Multiply the numbers: 4⋅1⋅0.01088…=0.04354…=0.28692…2−0.04354…​
0.28692…2=0.08232…=0.08232…−0.04354…​
Subtract the numbers: 0.08232…−0.04354…=0.03878…=0.03878…​
u1,2​=2⋅1−(−0.28692…)±0.03878…​​
Separate the solutionsu1​=2⋅1−(−0.28692…)+0.03878…​​,u2​=2⋅1−(−0.28692…)−0.03878…​​
u=2⋅1−(−0.28692…)+0.03878…​​:20.28692…+0.03878…​​
2⋅1−(−0.28692…)+0.03878…​​
Apply rule −(−a)=a=2⋅10.28692…+0.03878…​​
Multiply the numbers: 2⋅1=2=20.28692…+0.03878…​​
u=2⋅1−(−0.28692…)−0.03878…​​:20.28692…−0.03878…​​
2⋅1−(−0.28692…)−0.03878…​​
Apply rule −(−a)=a=2⋅10.28692…−0.03878…​​
Multiply the numbers: 2⋅1=2=20.28692…−0.03878…​​
The solutions to the quadratic equation are:u=20.28692…+0.03878…​​,u=20.28692…−0.03878…​​
Substitute back u=sin(x)sin(x)=20.28692…+0.03878…​​,sin(x)=20.28692…−0.03878…​​
sin(x)=20.28692…+0.03878…​​,sin(x)=20.28692…−0.03878…​​
sin(x)=20.28692…+0.03878…​​:x=arcsin(20.28692…+0.03878…​​)+2πn,x=π−arcsin(20.28692…+0.03878…​​)+2πn
sin(x)=20.28692…+0.03878…​​
Apply trig inverse properties
sin(x)=20.28692…+0.03878…​​
General solutions for sin(x)=20.28692…+0.03878…​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(20.28692…+0.03878…​​)+2πn,x=π−arcsin(20.28692…+0.03878…​​)+2πn
x=arcsin(20.28692…+0.03878…​​)+2πn,x=π−arcsin(20.28692…+0.03878…​​)+2πn
sin(x)=20.28692…−0.03878…​​:x=arcsin(20.28692…−0.03878…​​)+2πn,x=π−arcsin(20.28692…−0.03878…​​)+2πn
sin(x)=20.28692…−0.03878…​​
Apply trig inverse properties
sin(x)=20.28692…−0.03878…​​
General solutions for sin(x)=20.28692…−0.03878…​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(20.28692…−0.03878…​​)+2πn,x=π−arcsin(20.28692…−0.03878…​​)+2πn
x=arcsin(20.28692…−0.03878…​​)+2πn,x=π−arcsin(20.28692…−0.03878…​​)+2πn
Combine all the solutionsx=arcsin(20.28692…+0.03878…​​)+2πn,x=π−arcsin(20.28692…+0.03878…​​)+2πn,x=arcsin(20.28692…−0.03878…​​)+2πn,x=π−arcsin(20.28692…−0.03878…​​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 88.2sin(x)−12.78=0.188.2cos(x)
Remove the ones that don't agree with the equation.
Check the solution arcsin(20.28692…+0.03878…​​)+2πn:True
arcsin(20.28692…+0.03878…​​)+2πn
Plug in n=1arcsin(20.28692…+0.03878…​​)+2π1
For 88.2sin(x)−12.78=0.188.2cos(x)plug inx=arcsin(20.28692…+0.03878…​​)+2π188.2sin(arcsin(20.28692…+0.03878…​​)+2π1)−12.78=0.1⋅88.2cos(arcsin(20.28692…+0.03878…​​)+2π1)
Refine8.55799…=8.55799…
⇒True
Check the solution π−arcsin(20.28692…+0.03878…​​)+2πn:False
π−arcsin(20.28692…+0.03878…​​)+2πn
Plug in n=1π−arcsin(20.28692…+0.03878…​​)+2π1
For 88.2sin(x)−12.78=0.188.2cos(x)plug inx=π−arcsin(20.28692…+0.03878…​​)+2π188.2sin(π−arcsin(20.28692…+0.03878…​​)+2π1)−12.78=0.1⋅88.2cos(π−arcsin(20.28692…+0.03878…​​)+2π1)
Refine8.55799…=−8.55799…
⇒False
Check the solution arcsin(20.28692…−0.03878…​​)+2πn:False
arcsin(20.28692…−0.03878…​​)+2πn
Plug in n=1arcsin(20.28692…−0.03878…​​)+2π1
For 88.2sin(x)−12.78=0.188.2cos(x)plug inx=arcsin(20.28692…−0.03878…​​)+2π188.2sin(arcsin(20.28692…−0.03878…​​)+2π1)−12.78=0.1⋅88.2cos(arcsin(20.28692…−0.03878…​​)+2π1)
Refine−8.81106…=8.81106…
⇒False
Check the solution π−arcsin(20.28692…−0.03878…​​)+2πn:True
π−arcsin(20.28692…−0.03878…​​)+2πn
Plug in n=1π−arcsin(20.28692…−0.03878…​​)+2π1
For 88.2sin(x)−12.78=0.188.2cos(x)plug inx=π−arcsin(20.28692…−0.03878…​​)+2π188.2sin(π−arcsin(20.28692…−0.03878…​​)+2π1)−12.78=0.1⋅88.2cos(π−arcsin(20.28692…−0.03878…​​)+2π1)
Refine−8.81106…=−8.81106…
⇒True
x=arcsin(20.28692…+0.03878…​​)+2πn,x=π−arcsin(20.28692…−0.03878…​​)+2πn
Show solutions in decimal formx=0.24435…+2πn,x=π−0.04501…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1+sin(x)=2*cos(x)sin(x)=0.75cos(x)tan(x)=1.150.6=cos^2(x)10=sqrt(65)*sqrt(5)*cos(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for 88.2sin(x)-12.78=0.1*88.2cos(x) ?

    The general solution for 88.2sin(x)-12.78=0.1*88.2cos(x) is x=0.24435…+2pin,x=pi-0.04501…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024