Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2^{arccos(x)}+4^{arccos(x)+1}-2=3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2arccos(x)+4arccos(x)+1−2=3

Solution

x=1
Solution steps
2arccos(x)+4arccos(x)+1−2=3
Solve by substitution
2arccos(x)+4arccos(x)+1−2=3
Let: arccos(x)=u2u+4u+1−2=3
2u+4u+1−2=3:u=0
2u+4u+1−2=3
Apply exponent rules
2u+4u+1−2=3
Convert to base 2:2u+22(u+1)−2=3
Convert 4 to base 24=222u+(22)u+1−2=3
Apply exponent rule: (ab)c=abc(22)u+1=22(u+1)2u+22(u+1)−2=3
2u+22(u+1)−2=3
Apply exponent rule: ab+c=abac22(u+1)=22u⋅222u+22u⋅22−2=3
Apply exponent rule: abc=(ab)c22u=(2u)22u+(2u)2⋅22−2=3
2u+(2u)2⋅22−2=3
Rewrite the equation with 2u=vv+(v)2⋅22−2=3
Solve v+v2⋅22−2=3:v=1,v=−45​
v+v2⋅22−2=3
Expand v+v2⋅22−2:v+4v2−2
v+v2⋅22−2
22=4=v+4v2−2
v+4v2−2=3
Move 3to the left side
v+4v2−2=3
Subtract 3 from both sidesv+4v2−2−3=3−3
Simplify4v2+v−5=0
4v2+v−5=0
Solve with the quadratic formula
4v2+v−5=0
Quadratic Equation Formula:
For a=4,b=1,c=−5v1,2​=2⋅4−1±12−4⋅4(−5)​​
v1,2​=2⋅4−1±12−4⋅4(−5)​​
12−4⋅4(−5)​=9
12−4⋅4(−5)​
Apply rule 1a=112=1=1−4⋅4(−5)​
Apply rule −(−a)=a=1+4⋅4⋅5​
Multiply the numbers: 4⋅4⋅5=80=1+80​
Add the numbers: 1+80=81=81​
Factor the number: 81=92=92​
Apply radical rule: 92​=9=9
v1,2​=2⋅4−1±9​
Separate the solutionsv1​=2⋅4−1+9​,v2​=2⋅4−1−9​
v=2⋅4−1+9​:1
2⋅4−1+9​
Add/Subtract the numbers: −1+9=8=2⋅48​
Multiply the numbers: 2⋅4=8=88​
Apply rule aa​=1=1
v=2⋅4−1−9​:−45​
2⋅4−1−9​
Subtract the numbers: −1−9=−10=2⋅4−10​
Multiply the numbers: 2⋅4=8=8−10​
Apply the fraction rule: b−a​=−ba​=−810​
Cancel the common factor: 2=−45​
The solutions to the quadratic equation are:v=1,v=−45​
v=1,v=−45​
Substitute back v=2u,solve for u
Solve 2u=1:u=0
2u=1
Apply exponent rules
2u=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(2u)=ln(1)
Apply log rule: ln(xa)=a⋅ln(x)ln(2u)=uln(2)uln(2)=ln(1)
uln(2)=ln(1)
Solve uln(2)=ln(1):u=0
uln(2)=ln(1)
Divide both sides by ln(2)
uln(2)=ln(1)
Divide both sides by ln(2)ln(2)uln(2)​=ln(2)ln(1)​
Simplify
ln(2)uln(2)​=ln(2)ln(1)​
Simplify ln(2)uln(2)​:u
ln(2)uln(2)​
Cancel the common factor: ln(2)=u
Simplify ln(2)ln(1)​:0
ln(2)ln(1)​
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
=ln(2)0​
Apply rule a0​=0,a=0=0
u=0
u=0
u=0
u=0
Solve 2u=−45​:No Solution for u∈R
2u=−45​
af(u) cannot be zero or negative for u∈RNoSolutionforu∈R
u=0
Substitute back u=arccos(x)arccos(x)=0
arccos(x)=0
arccos(x)=0:x=1
arccos(x)=0
Apply trig inverse properties
arccos(x)=0
arccos(x)=a⇒x=cos(a)x=cos(0)
cos(0)=1
cos(0)
Use the following trivial identity:cos(0)=1
cos(0)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=1
=1
x=1
x=1
Combine all the solutionsx=1

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cos(x)+sin(2x)=0tan(α)=0.875sin(x)= 18/314cos^3(x)-3cos(x)=-0.70712tan(x)=tan(2x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2^{arccos(x)}+4^{arccos(x)+1}-2=3 ?

    The general solution for 2^{arccos(x)}+4^{arccos(x)+1}-2=3 is x=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024