Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2x+10)=cot(x-40)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2x+10∘)=cot(x−40∘)

Solution

x=40∘+3360∘n​
+1
Radians
x=92π​+32π​n
Solution steps
tan(2x+10∘)=cot(x−40∘)
Subtract cot(x−40∘) from both sidestan(2x+10∘)−cot(x−40∘)=0
Simplify tan(2x+10∘)−cot(x−40∘):tan(1836x+180∘​)−cot(99x−360∘​)
tan(2x+10∘)−cot(x−40∘)
Join 2x+10∘:1836x+180∘​
2x+10∘
Convert element to fraction: 2x=182x18​=182x⋅18​+10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=182x⋅18+180∘​
Multiply the numbers: 2⋅18=36=1836x+180∘​
=tan(1836x+180∘​)−cot(x−40∘)
Join x−40∘:99x−360∘​
x−40∘
Convert element to fraction: x=9x9​=9x⋅9​−40∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9x⋅9−360∘​
=tan(1836x+180∘​)−cot(99x−360∘​)
tan(1836x+180∘​)−cot(99x−360∘​)=0
Express with sin, cos
−cot(9−360∘+9x​)+tan(18180∘+36x​)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(9−360∘+9x​)cos(9−360∘+9x​)​+tan(18180∘+36x​)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(9−360∘+9x​)cos(9−360∘+9x​)​+cos(18180∘+36x​)sin(18180∘+36x​)​
Simplify −sin(9−360∘+9x​)cos(9−360∘+9x​)​+cos(18180∘+36x​)sin(18180∘+36x​)​:sin(99x−360∘​)cos(1836x+180∘​)−cos(9−360∘+9x​)cos(1836x+180∘​)+sin(18180∘+36x​)sin(99x−360∘​)​
−sin(9−360∘+9x​)cos(9−360∘+9x​)​+cos(18180∘+36x​)sin(18180∘+36x​)​
Least Common Multiplier of sin(9−360∘+9x​),cos(18180∘+36x​):sin(99x−360∘​)cos(1836x+180∘​)
sin(9−360∘+9x​),cos(18180∘+36x​)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(9−360∘+9x​) or cos(18180∘+36x​)=sin(99x−360∘​)cos(1836x+180∘​)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(99x−360∘​)cos(1836x+180∘​)
For sin(9−360∘+9x​)cos(9−360∘+9x​)​:multiply the denominator and numerator by cos(1836x+180∘​)sin(9−360∘+9x​)cos(9−360∘+9x​)​=sin(9−360∘+9x​)cos(1836x+180∘​)cos(9−360∘+9x​)cos(1836x+180∘​)​
For cos(18180∘+36x​)sin(18180∘+36x​)​:multiply the denominator and numerator by sin(99x−360∘​)cos(18180∘+36x​)sin(18180∘+36x​)​=cos(18180∘+36x​)sin(99x−360∘​)sin(18180∘+36x​)sin(99x−360∘​)​
=−sin(9−360∘+9x​)cos(1836x+180∘​)cos(9−360∘+9x​)cos(1836x+180∘​)​+cos(18180∘+36x​)sin(99x−360∘​)sin(18180∘+36x​)sin(99x−360∘​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(99x−360∘​)cos(1836x+180∘​)−cos(9−360∘+9x​)cos(1836x+180∘​)+sin(18180∘+36x​)sin(99x−360∘​)​
=sin(99x−360∘​)cos(1836x+180∘​)−cos(9−360∘+9x​)cos(1836x+180∘​)+sin(18180∘+36x​)sin(99x−360∘​)​
cos(18180∘+36x​)sin(9−360∘+9x​)−cos(9−360∘+9x​)cos(18180∘+36x​)+sin(9−360∘+9x​)sin(18180∘+36x​)​=0
g(x)f(x)​=0⇒f(x)=0−cos(9−360∘+9x​)cos(18180∘+36x​)+sin(9−360∘+9x​)sin(18180∘+36x​)=0
Rewrite using trig identities
−cos(9−360∘+9x​)cos(18180∘+36x​)+sin(9−360∘+9x​)sin(18180∘+36x​)
Use the Angle Sum identity: cos(s)cos(t)−sin(s)sin(t)=cos(s+t)−cos(s)cos(t)+sin(s)sin(t)=−cos(s+t)=−cos(9−360∘+9x​+18180∘+36x​)
−cos(9−360∘+9x​+18180∘+36x​)=0
Divide both sides by −1
−cos(9−360∘+9x​+18180∘+36x​)=0
Divide both sides by −1−1−cos(9−360∘+9x​+18180∘+36x​)​=−10​
Simplifycos(9−360∘+9x​+18180∘+36x​)=0
cos(9−360∘+9x​+18180∘+36x​)=0
General solutions for cos(9−360∘+9x​+18180∘+36x​)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
9−360∘+9x​+18180∘+36x​=90∘+360∘n,9−360∘+9x​+18180∘+36x​=270∘+360∘n
9−360∘+9x​+18180∘+36x​=90∘+360∘n,9−360∘+9x​+18180∘+36x​=270∘+360∘n
Solve 9−360∘+9x​+18180∘+36x​=90∘+360∘n:x=40∘+3360∘n​
9−360∘+9x​+18180∘+36x​=90∘+360∘n
Multiply by LCM
9−360∘+9x​+18180∘+36x​=90∘+360∘n
Find Least Common Multiplier of 9,18,2:18
9,18,2
Least Common Multiplier (LCM)
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
9,18,2
=3⋅3⋅2
Multiply the numbers: 3⋅3⋅2=18=18
Multiply by LCM=189−360∘+9x​⋅18+18180∘+36x​⋅18=90∘⋅18+360∘n⋅18
Simplify
9−360∘+9x​⋅18+18180∘+36x​⋅18=90∘⋅18+360∘n⋅18
Simplify 9−360∘+9x​⋅18:2(9x−360∘)
9−360∘+9x​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=9(−360∘+9x)⋅18​
Divide the numbers: 918​=2=2(9x−360∘)
Simplify 18180∘+36x​⋅18:180∘+36x
18180∘+36x​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=18(180∘+36x)⋅18​
Cancel the common factor: 18=180∘+36x
Simplify 90∘⋅18:1620∘
90∘⋅18
Multiply fractions: a⋅cb​=ca⋅b​=1620∘
Divide the numbers: 218​=9=1620∘
Simplify 360∘n⋅18:6480∘n
360∘n⋅18
Multiply the numbers: 2⋅18=36=6480∘n
2(9x−360∘)+180∘+36x=1620∘+6480∘n
2(9x−360∘)+180∘+36x=1620∘+6480∘n
2(9x−360∘)+180∘+36x=1620∘+6480∘n
Expand 2(9x−360∘)+180∘+36x:54x−540∘
2(9x−360∘)+180∘+36x
Expand 2(9x−360∘):18x−720∘
2(9x−360∘)
Apply the distributive law: a(b−c)=ab−aca=2,b=9x,c=360∘=2⋅9x−2⋅360∘
Simplify 2⋅9x−2⋅360∘:18x−720∘
2⋅9x−2⋅360∘
Multiply the numbers: 2⋅9=18=18x−2⋅360∘
Multiply the numbers: 2⋅2=4=18x−720∘
=18x−720∘
=18x−720∘+180∘+36x
Simplify 18x−720∘+180∘+36x:54x−540∘
18x−720∘+180∘+36x
Group like terms=18x+36x−720∘+180∘
Add similar elements: 18x+36x=54x=54x−720∘+180∘
Add similar elements: −720∘+180∘=−540∘=54x−540∘
=54x−540∘
54x−540∘=1620∘+6480∘n
Move 540∘to the right side
54x−540∘=1620∘+6480∘n
Add 540∘ to both sides54x−540∘+540∘=1620∘+6480∘n+540∘
Simplify54x=2160∘+6480∘n
54x=2160∘+6480∘n
Divide both sides by 54
54x=2160∘+6480∘n
Divide both sides by 545454x​=40∘+546480∘n​
Simplify
5454x​=40∘+546480∘n​
Simplify 5454x​:x
5454x​
Divide the numbers: 5454​=1=x
Simplify 40∘+546480∘n​:40∘+3360∘n​
40∘+546480∘n​
Cancel 40∘:40∘
40∘
Cancel the common factor: 6=40∘
=40∘+546480∘n​
Cancel 546480∘n​:3360∘n​
546480∘n​
Cancel the common factor: 18=3360∘n​
=40∘+3360∘n​
x=40∘+3360∘n​
x=40∘+3360∘n​
x=40∘+3360∘n​
Solve 9−360∘+9x​+18180∘+36x​=270∘+360∘n:x=100∘+3360∘n​
9−360∘+9x​+18180∘+36x​=270∘+360∘n
Multiply by LCM
9−360∘+9x​+18180∘+36x​=270∘+360∘n
Find Least Common Multiplier of 9,18,2:18
9,18,2
Least Common Multiplier (LCM)
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Compute a number comprised of factors that appear in at least one of the following:
9,18,2
=3⋅3⋅2
Multiply the numbers: 3⋅3⋅2=18=18
Multiply by LCM=189−360∘+9x​⋅18+18180∘+36x​⋅18=270∘⋅18+360∘n⋅18
Simplify
9−360∘+9x​⋅18+18180∘+36x​⋅18=270∘⋅18+360∘n⋅18
Simplify 9−360∘+9x​⋅18:2(9x−360∘)
9−360∘+9x​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=9(−360∘+9x)⋅18​
Divide the numbers: 918​=2=2(9x−360∘)
Simplify 18180∘+36x​⋅18:180∘+36x
18180∘+36x​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=18(180∘+36x)⋅18​
Cancel the common factor: 18=180∘+36x
Simplify 270∘⋅18:4860∘
270∘⋅18
Multiply fractions: a⋅cb​=ca⋅b​=4860∘
Multiply the numbers: 3⋅18=54=4860∘
Divide the numbers: 254​=27=4860∘
Simplify 360∘n⋅18:6480∘n
360∘n⋅18
Multiply the numbers: 2⋅18=36=6480∘n
2(9x−360∘)+180∘+36x=4860∘+6480∘n
2(9x−360∘)+180∘+36x=4860∘+6480∘n
2(9x−360∘)+180∘+36x=4860∘+6480∘n
Expand 2(9x−360∘)+180∘+36x:54x−540∘
2(9x−360∘)+180∘+36x
Expand 2(9x−360∘):18x−720∘
2(9x−360∘)
Apply the distributive law: a(b−c)=ab−aca=2,b=9x,c=360∘=2⋅9x−2⋅360∘
Simplify 2⋅9x−2⋅360∘:18x−720∘
2⋅9x−2⋅360∘
Multiply the numbers: 2⋅9=18=18x−2⋅360∘
Multiply the numbers: 2⋅2=4=18x−720∘
=18x−720∘
=18x−720∘+180∘+36x
Simplify 18x−720∘+180∘+36x:54x−540∘
18x−720∘+180∘+36x
Group like terms=18x+36x−720∘+180∘
Add similar elements: 18x+36x=54x=54x−720∘+180∘
Add similar elements: −720∘+180∘=−540∘=54x−540∘
=54x−540∘
54x−540∘=4860∘+6480∘n
Move 540∘to the right side
54x−540∘=4860∘+6480∘n
Add 540∘ to both sides54x−540∘+540∘=4860∘+6480∘n+540∘
Simplify54x=5400∘+6480∘n
54x=5400∘+6480∘n
Divide both sides by 54
54x=5400∘+6480∘n
Divide both sides by 545454x​=100∘+546480∘n​
Simplify
5454x​=100∘+546480∘n​
Simplify 5454x​:x
5454x​
Divide the numbers: 5454​=1=x
Simplify 100∘+546480∘n​:100∘+3360∘n​
100∘+546480∘n​
Cancel 100∘:100∘
100∘
Cancel the common factor: 6=100∘
=100∘+546480∘n​
Cancel 546480∘n​:3360∘n​
546480∘n​
Cancel the common factor: 18=3360∘n​
=100∘+3360∘n​
x=100∘+3360∘n​
x=100∘+3360∘n​
x=100∘+3360∘n​
x=40∘+3360∘n​,x=100∘+3360∘n​
Since the equation is undefined for:100∘+3360∘n​x=40∘+3360∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6cos(2t)=04cos(4x)=3tan(y)=-2sin(θ)=-2/(sqrt(2))solvefor x,sin(x)= 2/3

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2x+10)=cot(x-40) ?

    The general solution for tan(2x+10)=cot(x-40) is x=40+(360n)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024