Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sin(60-(3x)/4)=5sin((3x)/4-30)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sin(60∘−43x​)=5sin(43x​−30∘)

Solution

x=34⋅0.71851…​+3720∘n​
+1
Radians
x=34⋅0.71851…​+34π​n
Solution steps
3sin(60∘−43x​)=5sin(43x​−30∘)
Rewrite using trig identities
3sin(60∘−43x​)=5sin(43x​−30∘)
Rewrite using trig identities
sin(60∘−43x​)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(60∘)cos(43x​)−cos(60∘)sin(43x​)
Simplify sin(60∘)cos(43x​)−cos(60∘)sin(43x​):23​​cos(43x​)−21​sin(43x​)
sin(60∘)cos(43x​)−cos(60∘)sin(43x​)
Simplify sin(60∘):23​​
sin(60∘)
Use the following trivial identity:sin(60∘)=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=23​​cos(43x​)−cos(60∘)sin(43x​)
Simplify cos(60∘):21​
cos(60∘)
Use the following trivial identity:cos(60∘)=21​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
=23​​cos(43x​)−21​sin(43x​)
=23​​cos(43x​)−21​sin(43x​)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(43x​)cos(30∘)−cos(43x​)sin(30∘)
Simplify sin(43x​)cos(30∘)−cos(43x​)sin(30∘):23​​sin(43x​)−21​cos(43x​)
sin(43x​)cos(30∘)−cos(43x​)sin(30∘)
Simplify cos(30∘):23​​
cos(30∘)
Use the following trivial identity:cos(30∘)=23​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​sin(43x​)−sin(30∘)cos(43x​)
Simplify sin(30∘):21​
sin(30∘)
Use the following trivial identity:sin(30∘)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​sin(43x​)−21​cos(43x​)
=23​​sin(43x​)−21​cos(43x​)
3(23​​cos(43x​)−21​sin(43x​))=5(23​​sin(43x​)−21​cos(43x​))
3(23​​cos(43x​)−21​sin(43x​))=5(23​​sin(43x​)−21​cos(43x​))
Subtract 5(23​​sin(43x​)−21​cos(43x​)) from both sides2−3−53​​sin(43x​)+25+33​​cos(43x​)=0
Simplify 2−3−53​​sin(43x​)+25+33​​cos(43x​):2(−3−53​)sin(43x​)+(5+33​)cos(43x​)​
2−3−53​​sin(43x​)+25+33​​cos(43x​)
Multiply 2−3−53​​sin(43x​):2(−3−53​)sin(43x​)​
2−3−53​​sin(43x​)
Multiply fractions: a⋅cb​=ca⋅b​=2(−3−53​)sin(43x​)​
=2(−3−53​)sin(43x​)​+25+33​​cos(43x​)
Multiply 25+33​​cos(43x​):2(5+33​)cos(43x​)​
25+33​​cos(43x​)
Multiply fractions: a⋅cb​=ca⋅b​=2(5+33​)cos(43x​)​
=2(−3−53​)sin(43x​)​+2(5+33​)cos(43x​)​
Apply rule ca​±cb​=ca±b​=2(−3−53​)sin(43x​)+(5+33​)cos(43x​)​
2(−3−53​)sin(43x​)+(5+33​)cos(43x​)​=0
g(x)f(x)​=0⇒f(x)=0(−3−53​)sin(43x​)+(5+33​)cos(43x​)=0
Rewrite using trig identities
(−3−53​)sin(43x​)+(5+33​)cos(43x​)=0
Divide both sides by cos(43x​),cos(43x​)=0cos(43x​)(−3−53​)sin(43x​)+(5+33​)cos(43x​)​=cos(43x​)0​
Simplify−cos(43x​)3sin(43x​)​−cos(43x​)53​sin(43x​)​+5+33​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−(3+53​)tan(43x​)+5+33​=0
−(3+53​)tan(43x​)+5+33​=0
Move 5to the right side
−(3+53​)tan(43x​)+5+33​=0
Subtract 5 from both sides−(3+53​)tan(43x​)+5+33​−5=0−5
Simplify−(3+53​)tan(43x​)+33​=−5
−(3+53​)tan(43x​)+33​=−5
Move 33​to the right side
−(3+53​)tan(43x​)+33​=−5
Subtract 33​ from both sides−(3+53​)tan(43x​)+33​−33​=−5−33​
Simplify−(3+53​)tan(43x​)=−5−33​
−(3+53​)tan(43x​)=−5−33​
Simplify −(3+53​):−3−53​
−(3+53​)
Distribute parentheses=−(3)−(53​)
Apply minus-plus rules+(−a)=−a=−3−53​
(−3−53​)tan(43x​)=−5−33​
Divide both sides by −3−53​
(−3−53​)tan(43x​)=−5−33​
Divide both sides by −3−53​−3−53​(−3−53​)tan(43x​)​=−−3−53​5​−−3−53​33​​
Simplify
−3−53​(−3−53​)tan(43x​)​=−−3−53​5​−−3−53​33​​
Simplify −3−53​(−3−53​)tan(43x​)​:tan(43x​)
−3−53​(−3−53​)tan(43x​)​
Cancel the common factor: −3−53​=tan(43x​)
Simplify −−3−53​5​−−3−53​33​​:3315+83​​
−−3−53​5​−−3−53​33​​
Apply rule ca​±cb​=ca±b​=−3−53​−5−33​​
Apply the fraction rule: −b−a​=ba​−3−53​−5−33​​=−(3+53​)−(5+33​)​=3+53​5+33​​
Rationalize 3+53​5+33​​:3315+83​​
3+53​5+33​​
Multiply by the conjugate 3−53​3−53​​=(3+53​)(3−53​)(5+33​)(3−53​)​
(5+33​)(3−53​)=−30−163​
(5+33​)(3−53​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=5,b=33​,c=3,d=−53​=5⋅3+5(−53​)+33​⋅3+33​(−53​)
Apply minus-plus rules+(−a)=−a=5⋅3−5⋅53​+3⋅33​−3⋅53​3​
Simplify 5⋅3−5⋅53​+3⋅33​−3⋅53​3​:−30−163​
5⋅3−5⋅53​+3⋅33​−3⋅53​3​
5⋅3=15
5⋅3
Multiply the numbers: 5⋅3=15=15
5⋅53​=253​
5⋅53​
Multiply the numbers: 5⋅5=25=253​
3⋅33​=93​
3⋅33​
Multiply the numbers: 3⋅3=9=93​
3⋅53​3​=45
3⋅53​3​
Multiply the numbers: 3⋅5=15=153​3​
Apply radical rule: a​a​=a3​3​=3=15⋅3
Multiply the numbers: 15⋅3=45=45
=15−253​+93​−45
Add similar elements: −253​+93​=−163​=15−163​−45
Subtract the numbers: 15−45=−30=−30−163​
=−30−163​
(3+53​)(3−53​)=−66
(3+53​)(3−53​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=3,b=53​=32−(53​)2
Simplify 32−(53​)2:−66
32−(53​)2
32=9
32
32=9=9
(53​)2=75
(53​)2
Apply exponent rule: (a⋅b)n=anbn=52(3​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=52⋅3
52=25=25⋅3
Multiply the numbers: 25⋅3=75=75
=9−75
Subtract the numbers: 9−75=−66=−66
=−66
=−66−30−163​​
Apply the fraction rule: −b−a​=ba​−30−163​=−(30+163​)=6630+163​​
Factor 30+163​:2(15+83​)
30+163​
Rewrite as=2⋅15+2⋅83​
Factor out common term 2=2(15+83​)
=662(15+83​)​
Cancel the common factor: 2=3315+83​​
=3315+83​​
tan(43x​)=3315+83​​
tan(43x​)=3315+83​​
tan(43x​)=3315+83​​
Apply trig inverse properties
tan(43x​)=3315+83​​
General solutions for tan(43x​)=3315+83​​tan(x)=a⇒x=arctan(a)+180∘n43x​=arctan(3315+83​​)+180∘n
43x​=arctan(3315+83​​)+180∘n
Solve 43x​=arctan(3315+83​​)+180∘n:x=34arctan(3315+83​​)​+3720∘n​
43x​=arctan(3315+83​​)+180∘n
Multiply both sides by 4
43x​=arctan(3315+83​​)+180∘n
Multiply both sides by 444⋅3x​=4arctan(3315+83​​)+720∘n
Simplify3x=4arctan(3315+83​​)+720∘n
3x=4arctan(3315+83​​)+720∘n
Divide both sides by 3
3x=4arctan(3315+83​​)+720∘n
Divide both sides by 333x​=34arctan(3315+83​​)​+3720∘n​
Simplifyx=34arctan(3315+83​​)​+3720∘n​
x=34arctan(3315+83​​)​+3720∘n​
x=34arctan(3315+83​​)​+3720∘n​
Show solutions in decimal formx=34⋅0.71851…​+3720∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(sin(θ))/(60)=(sin(80))/(280.87)5.63=11cos((2pi)/T 0.137)solvefor x=2arctan(z),z-4-6cos(θ)=-7cos(x)=(sqrt(3))/(sqrt(2))

Frequently Asked Questions (FAQ)

  • What is the general solution for 3sin(60-(3x)/4)=5sin((3x)/4-30) ?

    The general solution for 3sin(60-(3x)/4)=5sin((3x)/4-30) is x=(4*0.71851…)/3+(720n)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024