Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

100+60sin((7pi)/3 x)=110,0<= x<= 1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

100+60sin(37π​x)=110,0≤x≤1

Solution

x=7π3⋅0.16744…​,x=7π3π−3⋅0.16744…​,x=7π3⋅0.16744…+6π​
+1
Degrees
x=1.30880…∘,x=23.24652…∘,x=50.41947…∘
Solution steps
100+60sin(37π​x)=110,0≤x≤1
Move 100to the right side
100+60sin(37π​x)=110
Subtract 100 from both sides100+60sin(37π​x)−100=110−100
Simplify60sin(37π​x)=10
60sin(37π​x)=10
Divide both sides by 60
60sin(37π​x)=10
Divide both sides by 606060sin(37π​x)​=6010​
Simplifysin(37π​x)=61​
sin(37π​x)=61​
Apply trig inverse properties
sin(37π​x)=61​
General solutions for sin(37π​x)=61​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn37π​x=arcsin(61​)+2πn,37π​x=π−arcsin(61​)+2πn
37π​x=arcsin(61​)+2πn,37π​x=π−arcsin(61​)+2πn
Solve 37π​x=arcsin(61​)+2πn:x=7π3arcsin(61​)​+76n​
37π​x=arcsin(61​)+2πn
Multiply both sides by 3
37π​x=arcsin(61​)+2πn
Multiply both sides by 33⋅37π​x=3arcsin(61​)+3⋅2πn
Simplify
3⋅37π​x=3arcsin(61​)+3⋅2πn
Simplify 3⋅37π​x:7πx
3⋅37π​x
Multiply fractions: a⋅cb​=ca⋅b​=37⋅3π​x
Cancel the common factor: 3=x⋅7π
Simplify 3arcsin(61​)+3⋅2πn:3arcsin(61​)+6πn
3arcsin(61​)+3⋅2πn
Multiply the numbers: 3⋅2=6=3arcsin(61​)+6πn
7πx=3arcsin(61​)+6πn
7πx=3arcsin(61​)+6πn
7πx=3arcsin(61​)+6πn
Divide both sides by 7π
7πx=3arcsin(61​)+6πn
Divide both sides by 7π7π7πx​=7π3arcsin(61​)​+7π6πn​
Simplifyx=7π3arcsin(61​)​+76n​
x=7π3arcsin(61​)​+76n​
Solve 37π​x=π−arcsin(61​)+2πn:x=73​−7π3arcsin(61​)​+76n​
37π​x=π−arcsin(61​)+2πn
Multiply both sides by 3
37π​x=π−arcsin(61​)+2πn
Multiply both sides by 33⋅37π​x=3π−3arcsin(61​)+3⋅2πn
Simplify
3⋅37π​x=3π−3arcsin(61​)+3⋅2πn
Simplify 3⋅37π​x:7πx
3⋅37π​x
Multiply fractions: a⋅cb​=ca⋅b​=37⋅3π​x
Cancel the common factor: 3=x⋅7π
Simplify 3π−3arcsin(61​)+3⋅2πn:3π−3arcsin(61​)+6πn
3π−3arcsin(61​)+3⋅2πn
Multiply the numbers: 3⋅2=6=3π−3arcsin(61​)+6πn
7πx=3π−3arcsin(61​)+6πn
7πx=3π−3arcsin(61​)+6πn
7πx=3π−3arcsin(61​)+6πn
Divide both sides by 7π
7πx=3π−3arcsin(61​)+6πn
Divide both sides by 7π7π7πx​=7π3π​−7π3arcsin(61​)​+7π6πn​
Simplify
7π7πx​=7π3π​−7π3arcsin(61​)​+7π6πn​
Simplify 7π7πx​:x
7π7πx​
Divide the numbers: 77​=1=ππx​
Cancel the common factor: π=x
Simplify 7π3π​−7π3arcsin(61​)​+7π6πn​:73​−7π3arcsin(61​)​+76n​
7π3π​−7π3arcsin(61​)​+7π6πn​
Cancel 7π3π​:73​
7π3π​
Cancel the common factor: π=73​
=73​−7π3arcsin(61​)​+7π6πn​
Cancel 7π6πn​:76n​
7π6πn​
Cancel the common factor: π=76n​
=73​−7π3arcsin(61​)​+76n​
x=73​−7π3arcsin(61​)​+76n​
x=73​−7π3arcsin(61​)​+76n​
x=73​−7π3arcsin(61​)​+76n​
x=7π3arcsin(61​)​+76n​,x=73​−7π3arcsin(61​)​+76n​
Solutions for the range 0≤x≤1x=7π3arcsin(61​)​,x=7π3π−3arcsin(61​)​,x=7π3arcsin(61​)+6π​
Show solutions in decimal formx=7π3⋅0.16744…​,x=7π3π−3⋅0.16744…​,x=7π3⋅0.16744…+6π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(4x)= 1/(sqrt(2))cot^2(x)+csc(x)=1,0<= x<2pi81pi=10.5-9cos(pi/(30)t)5-9cos(x)=0tan^2(x)=500
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024