Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cot^2(2x-(3pi)/2)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cot2(2x−23π​)=1

Solution

x=2πn​+1211π​,x=2πn​+1213π​
+1
Degrees
x=165∘+90∘n,x=195∘+90∘n
Solution steps
3cot2(2x−23π​)=1
Solve by substitution
3cot2(2x−23π​)=1
Let: cot(2x−23π​)=u3u2=1
3u2=1:u=31​​,u=−31​​
3u2=1
Divide both sides by 3
3u2=1
Divide both sides by 333u2​=31​
Simplifyu2=31​
u2=31​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=31​​,u=−31​​
Substitute back u=cot(2x−23π​)cot(2x−23π​)=31​​,cot(2x−23π​)=−31​​
cot(2x−23π​)=31​​,cot(2x−23π​)=−31​​
cot(2x−23π​)=31​​:x=2πn​+1211π​
cot(2x−23π​)=31​​
Apply trig inverse properties
cot(2x−23π​)=31​​
General solutions for cot(2x−23π​)=31​​cot(x)=a⇒x=arccot(a)+πn2x−23π​=arccot(31​​)+πn
2x−23π​=arccot(31​​)+πn
Solve 2x−23π​=arccot(31​​)+πn:x=2πn​+1211π​
2x−23π​=arccot(31​​)+πn
Simplify arccot(31​​)+πn:3π​+πn
arccot(31​​)+πn
Use the following trivial identity:arccot(31​​)=3π​x−3​−1−33​​033​​13​​arccot(x)65π​43π​32π​2π​3π​4π​6π​​arccot(x)150∘135∘120∘90∘60∘45∘30∘​​=3π​+πn
2x−23π​=3π​+πn
Move 23π​to the right side
2x−23π​=3π​+πn
Add 23π​ to both sides2x−23π​+23π​=3π​+πn+23π​
Simplify
2x−23π​+23π​=3π​+πn+23π​
Simplify 2x−23π​+23π​:2x
2x−23π​+23π​
Add similar elements: −23π​+23π​=0
=2x
Simplify 3π​+πn+23π​:πn+611π​
3π​+πn+23π​
Group like terms=πn+3π​+23π​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 3π​:multiply the denominator and numerator by 23π​=3⋅2π2​=6π2​
For 23π​:multiply the denominator and numerator by 323π​=2⋅33π3​=69π​
=6π2​+69π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π2+9π​
Add similar elements: 2π+9π=11π=πn+611π​
2x=πn+611π​
2x=πn+611π​
2x=πn+611π​
Divide both sides by 2
2x=πn+611π​
Divide both sides by 222x​=2πn​+2611π​​
Simplify
22x​=2πn​+2611π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2πn​+2611π​​:2πn​+1211π​
2πn​+2611π​​
2611π​​=1211π​
2611π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅211π​
Multiply the numbers: 6⋅2=12=1211π​
=2πn​+1211π​
x=2πn​+1211π​
x=2πn​+1211π​
x=2πn​+1211π​
x=2πn​+1211π​
cot(2x−23π​)=−31​​:x=2πn​+1213π​
cot(2x−23π​)=−31​​
Apply trig inverse properties
cot(2x−23π​)=−31​​
General solutions for cot(2x−23π​)=−31​​cot(x)=−a⇒x=arccot(−a)+πn2x−23π​=arccot(−31​​)+πn
2x−23π​=arccot(−31​​)+πn
Solve 2x−23π​=arccot(−31​​)+πn:x=2πn​+1213π​
2x−23π​=arccot(−31​​)+πn
Simplify arccot(−31​​)+πn:32π​+πn
arccot(−31​​)+πn
Use the following trivial identity:arccot(−31​​)=32π​x−3​−1−33​​033​​13​​arccot(x)65π​43π​32π​2π​3π​4π​6π​​arccot(x)150∘135∘120∘90∘60∘45∘30∘​​=32π​+πn
2x−23π​=32π​+πn
Move 23π​to the right side
2x−23π​=32π​+πn
Add 23π​ to both sides2x−23π​+23π​=32π​+πn+23π​
Simplify
2x−23π​+23π​=32π​+πn+23π​
Simplify 2x−23π​+23π​:2x
2x−23π​+23π​
Add similar elements: −23π​+23π​=0
=2x
Simplify 32π​+πn+23π​:πn+613π​
32π​+πn+23π​
Group like terms=πn+32π​+23π​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 32π​:multiply the denominator and numerator by 232π​=3⋅22π2​=64π​
For 23π​:multiply the denominator and numerator by 323π​=2⋅33π3​=69π​
=64π​+69π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=64π+9π​
Add similar elements: 4π+9π=13π=πn+613π​
2x=πn+613π​
2x=πn+613π​
2x=πn+613π​
Divide both sides by 2
2x=πn+613π​
Divide both sides by 222x​=2πn​+2613π​​
Simplify
22x​=2πn​+2613π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2πn​+2613π​​:2πn​+1213π​
2πn​+2613π​​
2613π​​=1213π​
2613π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅213π​
Multiply the numbers: 6⋅2=12=1213π​
=2πn​+1213π​
x=2πn​+1213π​
x=2πn​+1213π​
x=2πn​+1213π​
x=2πn​+1213π​
Combine all the solutionsx=2πn​+1211π​,x=2πn​+1213π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1.6sin(θ)=1.49cos(x)=0.695sin(2.5x)=2.75cos(2.5x)3cos(5t)=0cos(x)-sqrt(cos(x))=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 3cot^2(2x-(3pi)/2)=1 ?

    The general solution for 3cot^2(2x-(3pi)/2)=1 is x=(pin)/2+(11pi}{12},x=(pin)/2+\frac{13pi)/(12)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024