Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^4(x)=-1/8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin4(x)=−81​

Solution

NoSolutionforx∈R
Solution steps
sin4(x)=−81​
Solve by substitution
sin4(x)=−81​
Let: sin(x)=ww4=−81​
w4=−81​
Rewrite the equation with u=w2 and u2=w4u2=−81​
Solve u2=−81​:u=i42​​,u=−i42​​
u2=−81​
For (g(x))2=f(a) the solutions are g(x)=f(a)​,−f(a)​
u=−81​​,u=−−81​​
Simplify −81​​:i42​​
−81​​
Apply radical rule: −a​=−1​a​−81​​=−1​81​​=−1​81​​
Apply imaginary number rule: −1​=i=i81​​
Apply radical rule: assuming a≥0,b≥081​​=8​1​​=i8​1​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=i22​1​​
Apply rule 1​=1=i22​1​
22​1​=42​​
22​1​
Multiply by the conjugate 2​2​​=22​2​1⋅2​​
1⋅2​=2​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​​
=i42​​
Rewrite i42​​ in standard complex form: 42​​i
i42​​
42​​=22​1​
42​​
Factor 4:22
Factor 4=22
=222​​
Cancel 222​​:223​1​
222​​
Apply radical rule: 2​=221​=22221​​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​1​
Subtract the numbers: 2−21​=23​=223​1​
=223​1​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​1​
=i22​1​
Multiply fractions: a⋅cb​=ca⋅b​=22​1i​
Multiply: 1i=i=22​i​
22​1​=42​​
22​1​
Multiply by the conjugate 2​2​​=22​2​1⋅2​​
1⋅2​=2​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​​
=42​​i
=42​​i
Simplify −−81​​:−i42​​
−−81​​
Simplify −81​​:i22​1​​
−81​​
Apply radical rule: −a​=−1​a​−81​​=−1​81​​=−1​81​​
Apply imaginary number rule: −1​=i=i81​​
Apply radical rule: assuming a≥0,b≥081​​=8​1​​=i8​1​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=i22​1​​
=−i22​1​​
Apply rule 1​=1=−i22​1​
22​1​=42​​
22​1​
Multiply by the conjugate 2​2​​=22​2​1⋅2​​
1⋅2​=2​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​​
=−42​​i
u=i42​​,u=−i42​​
u=i42​​,u=−i42​​
Substitute back u=w2,solve for w
Solve
w2=i42​​
Substitute w=u+vi(u+vi)2=i42​​
Expand (u+vi)2:(u2−v2)+2iuv
(u+vi)2
=(u+iv)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u,b=vi
=u2+2uvi+(vi)2
(vi)2=−v2
(vi)2
Apply exponent rule: (a⋅b)n=anbn=i2v2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)v2
Refine=−v2
=u2+2iuv−v2
Rewrite u2+2iuv−v2 in standard complex form: (u2−v2)+2uvi
u2+2iuv−v2
Group the real part and the imaginary part of the complex number=(u2−v2)+2uvi
=(u2−v2)+2uvi
(u2−v2)+2iuv=i42​​
Rewrite i42​​ in standard complex form: 0+42​​i(u2−v2)+2iuv=0+42​​i
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[u2−v2=02uv=42​​​]
[u2−v2=02uv=42​​​]
Isolate ufor 2uv=42​​:u=225​v1​
2uv=42​​
Factor the number: 4=2⋅22uv=2⋅22​​
Apply radical rule: a=a​a​2=2​2​2uv=2​2​⋅22​​
Cancel the common factor: 2​2uv=2​⋅21​
2uv=22​1​
Divide both sides by 2v
2uv=22​1​
Divide both sides by 2v2v2uv​=2v22​1​​
Simplify
2v2uv​=2v22​1​​
Simplify 2v2uv​:u
2v2uv​
Cancel the common factor: 2=vuv​
Cancel the common factor: v=u
Simplify 2v22​1​​:225​v1​
2v22​1​​
Apply the fraction rule: cba​​=b⋅ca​=22​⋅2v1​
Simplify 22​⋅2v:225​v
22​⋅2v
2⋅2=22
2⋅2
Apply exponent rule: ab⋅ac=ab+c2⋅2=21+1=21+1
Add the numbers: 1+1=2=22
=222​v
Apply radical rule: a​=a21​2​=221​=22⋅221​v
22⋅221​=225​
22⋅221​
Apply exponent rule: ab⋅ac=ab+c22⋅221​=22+21​=22+21​
2+21​=25​
2+21​
Convert element to fraction: 2=22⋅2​=22⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22⋅2+1​
2⋅2+1=5
2⋅2+1
Multiply the numbers: 2⋅2=4=4+1
Add the numbers: 4+1=5=5
=25​
=225​
=225​v
=225​v1​
u=225​v1​
u=225​v1​
u=225​v1​
Plug the solutions u=225​v1​ into u2−v2=0
For u2−v2=0, subsitute u with
For u2−v2=0, subsitute u with 225​v1​(225​v1​)2−v2=0
Solve
(225​v1​)2−v2=0
Simplify (225​v1​)2:32v21​
(225​v1​)2
225​v1​=222​v1​
225​v1​
225​=222​
225​
225​=22+21​=22+21​
Apply exponent rule: xa+b=xaxb=22⋅221​
Refine=222​
=222​v1​
=(222​v1​)2
Apply exponent rule: (ba​)c=bcac​=(222​v)212​
Apply exponent rule: (a⋅b)n=anbn(222​v)2=(22)2(2​)2v2=(22)2(2​)2v212​
(22)2:24
Apply exponent rule: (ab)c=abc=22⋅2
Multiply the numbers: 2⋅2=4=24
=24(2​)2v212​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=24⋅2v212​
Apply rule 1a=112=1=24⋅2v21​
24⋅2v2=25v2
24⋅2v2
Apply exponent rule: ab⋅ac=ab+c24⋅2=24+1=24+1v2
Add the numbers: 4+1=5=25v2
=25v21​
25=32=32v21​
32v21​−v2=0
Multiply both sides by 32v2
32v21​−v2=0
Multiply both sides by 32v232v21​⋅32v2−v2⋅32v2=0⋅32v2
Simplify
32v21​⋅32v2−v2⋅32v2=0⋅32v2
Simplify 32v21​⋅32v2:1
32v21​⋅32v2
Multiply fractions: a⋅cb​=ca⋅b​=32v21⋅32v2​
Cancel the common factor: 32=v21⋅v2​
Cancel the common factor: v2=1
Simplify −v2⋅32v2:−32v4
−v2⋅32v2
Apply exponent rule: ab⋅ac=ab+cv2v2=v2+2=−32v2+2
Add the numbers: 2+2=4=−32v4
Simplify 0⋅32v2:0
0⋅32v2
Apply rule 0⋅a=0=0
1−32v4=0
1−32v4=0
1−32v4=0
Solve
1−32v4=0
Move 1to the right side
1−32v4=0
Subtract 1 from both sides1−32v4−1=0−1
Simplify−32v4=−1
−32v4=−1
Divide both sides by −32
−32v4=−1
Divide both sides by −32−32−32v4​=−32−1​
Simplifyv4=321​
v4=321​
For xn=f(a), n is even, the solutions are
Apply radical rule:
Apply radical rule:
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
Apply exponent rule: ab+c=ab⋅ac25=24⋅2
Apply radical rule:
Apply radical rule:
Apply radical rule:
Apply radical rule:
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
Apply exponent rule: ab+c=ab⋅ac25=24⋅2
Apply radical rule:
Apply radical rule:
Verify Solutions
Find undefined (singularity) points:v=0
Take the denominator(s) of (225​v1​)2−v2 and compare to zero
Solve 225​v=0:v=0
225​v=0
Divide both sides by 225​
225​v=0
Divide both sides by 225​225​225​v​=225​0​
Simplify
225​225​v​=225​0​
Simplify 225​225​v​:v
225​225​v​
Cancel the common factor: 225​=v
Simplify 225​0​:0
225​0​
Apply rule a0​=0: a=0=0
v=0
v=0
v=0
The following points are undefinedv=0
Combine undefined points with solutions:
Plug the solutions into 2uv=42​​
For 2uv=42​​, subsitute v with
For 2uv=42​​, subsitute v with
Solve
Factor the number: 4=2⋅2
Apply radical rule: a=a​a​2=2​2​
Cancel the common factor: 2​
Multiply both sides by
Multiply both sides by
Simplify
Simplify
2⋅2=22
2⋅2
Apply exponent rule: ab⋅ac=ab+c2⋅2=21+1=21+1
Add the numbers: 1+1=2=22
Apply radical rule:
22⋅241​=249​
22⋅241​
Apply exponent rule: ab⋅ac=ab+c22⋅241​=22+41​=22+41​
2+41​=49​
2+41​
Convert element to fraction: 2=42⋅4​=42⋅4​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42⋅4+1​
2⋅4+1=9
2⋅4+1
Multiply the numbers: 2⋅4=8=8+1
Add the numbers: 8+1=9=9
=49​
=249​
Apply the fraction rule: a⋅cb​=ca⋅b​
Apply rule: a⋅1=a249​u⋅1=249​u
Cancel
Simplify 2249​​:245​
2249​​
Apply exponent rule: xbxa​=xa−b=249​−1
49​−1=45​
49​−1
Convert element to fraction: 1=41⋅4​=−41⋅4​+49​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−1⋅4+9​
−1⋅4+9=5
−1⋅4+9
Multiply the numbers: 1⋅4=4=−4+9
Add/Subtract the numbers: −4+9=5=5
=45​
=245​
Apply radical rule: =241​245​​
Simplify 241​245​​:2
241​245​​
Apply exponent rule: xbxa​=xa−b=245​−41​
45​−41​=1
45​−41​
Apply rule ca​±cb​=ca±b​=45−1​
Subtract the numbers: 5−1=4=44​
Apply rule aa​=1=1
=21
Apply exponent rule: a1=a=2
=2
=2u
=2u
Simplify
Multiply the numbers: 1⋅2=2
Cancel the common factor: 2
Apply radical rule: =2​241​​
Apply radical rule: a​=a21​2​=221​=221​241​​
Simplify
221​241​​
Apply exponent rule: xbxa​=xb−a1​=221​−41​1​
21​−41​=41​
21​−41​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=42​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42−1​
Subtract the numbers: 2−1=1=41​
=241​1​
Apply exponent rule:
Divide both sides by 2
Divide both sides by 2
Simplify
Simplify 22u​:u
22u​
Cancel the common factor: 2=u
Simplify
Apply the fraction rule: cba​​=b⋅ca​
For 2uv=42​​, subsitute v with
For 2uv=42​​, subsitute v with
Solve
Factor the number: 4=2⋅2
Apply radical rule: a=a​a​2=2​2​
Cancel the common factor: 2​
Divide both sides by
Divide both sides by
Simplify
Simplify
Simplify
Apply rule: a(−b)=−ab
Apply rule: a(−b)=−ab
Cancel the common factor: −2
Cancel the common factor: =u
Simplify
Apply the fraction rule: cba​​=b⋅ca​
Apply rule: a(−b)=−ab
2⋅2=22
2⋅2
Apply exponent rule: ab⋅ac=ab+c2⋅2=21+1=21+1
Add the numbers: 1+1=2=22
Apply radical rule: a​=a21​2​=221​
22⋅221​=225​
22⋅221​
Apply exponent rule: ab⋅ac=ab+c22⋅221​=22+21​=22+21​
2+21​=25​
2+21​
Convert element to fraction: 2=22⋅2​=22⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22⋅2+1​
2⋅2+1=5
2⋅2+1
Multiply the numbers: 2⋅2=4=4+1
Add the numbers: 4+1=5=5
=25​
=225​
Apply the fraction rule: −ba​=−ba​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into u2−v2=0
Remove the ones that don't agree with the equation.
Check the solution True
u2−v2=0
Plug in
Refine0=0
True
Check the solution True
u2−v2=0
Plug in
Refine0=0
True
Check the solutions by plugging them into 2uv=42​​
Remove the ones that don't agree with the equation.
Check the solution True
2uv=42​​
Plug in
Refine42​​=42​​
True
Check the solution True
2uv=42​​
Plug in
Refine42​​=42​​
True
Therefore, the final solutions for u2−v2=0,2uv=42​​ are
Substitute back w=u+vi
Solve
w2=−i42​​
Substitute w=u+vi(u+vi)2=−i42​​
Expand (u+vi)2:(u2−v2)+2iuv
(u+vi)2
=(u+iv)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u,b=vi
=u2+2uvi+(vi)2
(vi)2=−v2
(vi)2
Apply exponent rule: (a⋅b)n=anbn=i2v2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)v2
Refine=−v2
=u2+2iuv−v2
Rewrite u2+2iuv−v2 in standard complex form: (u2−v2)+2uvi
u2+2iuv−v2
Group the real part and the imaginary part of the complex number=(u2−v2)+2uvi
=(u2−v2)+2uvi
(u2−v2)+2iuv=−i42​​
Rewrite −i42​​ in standard complex form: 0−42​​i(u2−v2)+2iuv=0−42​​i
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[u2−v2=02uv=−42​​​]
[u2−v2=02uv=−42​​​]
Isolate ufor 2uv=−42​​:u=−225​v1​
2uv=−42​​
Factor the number: 4=2⋅22uv=−2⋅22​​
Apply radical rule: a=a​a​2=2​2​2uv=−2​2​⋅22​​
Cancel the common factor: 2​2uv=−2​⋅21​
2uv=−22​1​
Divide both sides by 2v
2uv=−22​1​
Divide both sides by 2v2v2uv​=2v−22​1​​
Simplify
2v2uv​=2v−22​1​​
Simplify 2v2uv​:u
2v2uv​
Cancel the common factor: 2=vuv​
Cancel the common factor: v=u
Simplify 2v−22​1​​:−225​v1​
2v−22​1​​
Apply the fraction rule: b−a​=−ba​=−2v22​1​​
Apply the fraction rule: cba​​=b⋅ca​2v22​1​​=22​⋅2v1​=−22​⋅2v1​
Simplify 22​⋅2v:225​v
22​⋅2v
2⋅2=22
2⋅2
Apply exponent rule: ab⋅ac=ab+c2⋅2=21+1=21+1
Add the numbers: 1+1=2=22
=222​v
Apply radical rule: a​=a21​2​=221​=22⋅221​v
22⋅221​=225​
22⋅221​
Apply exponent rule: ab⋅ac=ab+c22⋅221​=22+21​=22+21​
2+21​=25​
2+21​
Convert element to fraction: 2=22⋅2​=22⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22⋅2+1​
2⋅2+1=5
2⋅2+1
Multiply the numbers: 2⋅2=4=4+1
Add the numbers: 4+1=5=5
=25​
=225​
=225​v
=−225​v1​
u=−225​v1​
u=−225​v1​
u=−225​v1​
Plug the solutions u=−225​v1​ into u2−v2=0
For u2−v2=0, subsitute u with
For u2−v2=0, subsitute u with −225​v1​(−225​v1​)2−v2=0
Solve
(−225​v1​)2−v2=0
Simplify (−225​v1​)2:32v21​
(−225​v1​)2
225​v1​=222​v1​
225​v1​
225​=222​
225​
225​=22+21​=22+21​
Apply exponent rule: xa+b=xaxb=22⋅221​
Refine=222​
=222​v1​
=(−222​v1​)2
Apply exponent rule: (−a)n=an,if n is even(−222​v1​)2=(222​v1​)2=(222​v1​)2
Apply exponent rule: (ba​)c=bcac​=(222​v)212​
Apply exponent rule: (a⋅b)n=anbn(222​v)2=(22)2(2​)2v2=(22)2(2​)2v212​
(22)2:24
Apply exponent rule: (ab)c=abc=22⋅2
Multiply the numbers: 2⋅2=4=24
=24(2​)2v212​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=24⋅2v212​
Apply rule 1a=112=1=24⋅2v21​
24⋅2v2=25v2
24⋅2v2
Apply exponent rule: ab⋅ac=ab+c24⋅2=24+1=24+1v2
Add the numbers: 4+1=5=25v2
=25v21​
25=32=32v21​
32v21​−v2=0
Multiply both sides by 32v2
32v21​−v2=0
Multiply both sides by 32v232v21​⋅32v2−v2⋅32v2=0⋅32v2
Simplify
32v21​⋅32v2−v2⋅32v2=0⋅32v2
Simplify 32v21​⋅32v2:1
32v21​⋅32v2
Multiply fractions: a⋅cb​=ca⋅b​=32v21⋅32v2​
Cancel the common factor: 32=v21⋅v2​
Cancel the common factor: v2=1
Simplify −v2⋅32v2:−32v4
−v2⋅32v2
Apply exponent rule: ab⋅ac=ab+cv2v2=v2+2=−32v2+2
Add the numbers: 2+2=4=−32v4
Simplify 0⋅32v2:0
0⋅32v2
Apply rule 0⋅a=0=0
1−32v4=0
1−32v4=0
1−32v4=0
Solve
1−32v4=0
Move 1to the right side
1−32v4=0
Subtract 1 from both sides1−32v4−1=0−1
Simplify−32v4=−1
−32v4=−1
Divide both sides by −32
−32v4=−1
Divide both sides by −32−32−32v4​=−32−1​
Simplifyv4=321​
v4=321​
For xn=f(a), n is even, the solutions are
Apply radical rule:
Apply radical rule:
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
Apply exponent rule: ab+c=ab⋅ac25=24⋅2
Apply radical rule:
Apply radical rule:
Apply radical rule:
Apply radical rule:
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
Apply exponent rule: ab+c=ab⋅ac25=24⋅2
Apply radical rule:
Apply radical rule:
Verify Solutions
Find undefined (singularity) points:v=0
Take the denominator(s) of (−225​v1​)2−v2 and compare to zero
Solve 225​v=0:v=0
225​v=0
Divide both sides by 225​
225​v=0
Divide both sides by 225​225​225​v​=225​0​
Simplify
225​225​v​=225​0​
Simplify 225​225​v​:v
225​225​v​
Cancel the common factor: 225​=v
Simplify 225​0​:0
225​0​
Apply rule a0​=0: a=0=0
v=0
v=0
v=0
The following points are undefinedv=0
Combine undefined points with solutions:
Plug the solutions into 2uv=−42​​
For 2uv=−42​​, subsitute v with
For 2uv=−42​​, subsitute v with
Solve
Factor the number: 4=2⋅2
Apply radical rule: a=a​a​2=2​2​
Cancel the common factor: 2​
Multiply both sides by
Multiply both sides by
Simplify
Simplify
2⋅2=22
2⋅2
Apply exponent rule: ab⋅ac=ab+c2⋅2=21+1=21+1
Add the numbers: 1+1=2=22
Apply radical rule:
22⋅241​=249​
22⋅241​
Apply exponent rule: ab⋅ac=ab+c22⋅241​=22+41​=22+41​
2+41​=49​
2+41​
Convert element to fraction: 2=42⋅4​=42⋅4​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42⋅4+1​
2⋅4+1=9
2⋅4+1
Multiply the numbers: 2⋅4=8=8+1
Add the numbers: 8+1=9=9
=49​
=249​
Apply the fraction rule: a⋅cb​=ca⋅b​
Apply rule: a⋅1=a249​u⋅1=249​u
Cancel
Simplify 2249​​:245​
2249​​
Apply exponent rule: xbxa​=xa−b=249​−1
49​−1=45​
49​−1
Convert element to fraction: 1=41⋅4​=−41⋅4​+49​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−1⋅4+9​
−1⋅4+9=5
−1⋅4+9
Multiply the numbers: 1⋅4=4=−4+9
Add/Subtract the numbers: −4+9=5=5
=45​
=245​
Apply radical rule: =241​245​​
Simplify 241​245​​:2
241​245​​
Apply exponent rule: xbxa​=xa−b=245​−41​
45​−41​=1
45​−41​
Apply rule ca​±cb​=ca±b​=45−1​
Subtract the numbers: 5−1=4=44​
Apply rule aa​=1=1
=21
Apply exponent rule: a1=a=2
=2
=2u
=2u
Simplify
Apply rule: (−a)=−a(−22​1​)=−22​1​
Convert 2to fraction :12​
2
Convert element to fraction: 2=12​=12​
Apply the fraction rule: ba​⋅dc​=b⋅da⋅c​22​1​⋅12​=22​⋅11⋅2​
22​⋅11⋅2​=2​1​
22​⋅11⋅2​
22​⋅11⋅2​=22​2​
22​⋅11⋅2​
Multiply the numbers: 1⋅2=2=22​⋅12​
Multiply the numbers: 2⋅1=2=22​2​
=22​2​
Cancel the common factor: 2=2​1​
Divide both sides by 2
Divide both sides by 2
Simplify
Simplify 22u​:u
22u​
Cancel the common factor: 2=u
Simplify
Apply radical rule:
Cancel the common factor:
Apply exponent rule: aaa=a3
Apply the fraction rule: b−a​=−ba​
Apply radical rule: =(241​)3
Apply exponent rule: (ab)c=abc=241​⋅3
41​⋅3=43​
41​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=41⋅3​
Multiply the numbers: 1⋅3=3=43​
=243​
=−243​2​1​​
−243​2​1​​=−245​1​
−243​2​1​​
Apply the fraction rule: cba​​=b⋅ca​243​2​1​​=2​⋅243​1​=−2​⋅243​1​
2​⋅243​=245​
2​⋅243​
Apply radical rule: a​=a21​2​=221​=221​⋅243​
Apply exponent rule: ab⋅ac=ab+c221​⋅243​=221​+43​=221​+43​
21​+43​=45​
21​+43​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=42​+43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42+3​
Add the numbers: 2+3=5=45​
=245​
=−245​1​
=−245​1​
=−245​1​
u=−245​1​
u=−245​1​
u=−245​1​
For 2uv=−42​​, subsitute v with
For 2uv=−42​​, subsitute v with
Solve
Factor the number: 4=2⋅2
Apply radical rule: a=a​a​2=2​2​
Cancel the common factor: 2​
Divide both sides by
Divide both sides by
Simplify
Simplify
Simplify
Apply rule: a(−b)=−ab
Apply rule: a(−b)=−ab
Cancel the common factor: −2
Cancel the common factor: =u
Simplify
Apply the fraction rule: b−a​=−ba​
Apply rule: a(−b)=−ab
Convert 2to fraction :12​
2
Convert element to fraction: 2=12​=12​
Apply the fraction rule: ba​⋅dc​=b⋅da⋅c​
Multiply the numbers: 2⋅1=2
Multiply the numbers: 1⋅2=2
Cancel the common factor: 2
Apply the fraction rule: −ba​=−ba​
Apply rule: −(−a)=a
Apply the fraction rule: dc​ba​​=b⋅ca⋅d​
Cancel
Apply rule: 1⋅a=a
Multiply the numbers: 2⋅1=2
Apply radical rule:
Cancel the common factor:
Apply exponent rule: aaa=a3
Apply radical rule: =(241​)3
Apply exponent rule: (ab)c=abc=241​⋅3
41​⋅3=43​
41​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=41⋅3​
Multiply the numbers: 1⋅3=3=43​
=243​
=243​2​1​
243​2​=245​
243​2​
Apply radical rule: a​=a21​2​=221​=243​⋅221​
Apply exponent rule: ab⋅ac=ab+c243​⋅221​=243​+21​=243​+21​
43​+21​=45​
43​+21​
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=43​+42​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=43+2​
Add the numbers: 3+2=5=45​
=245​
=245​1​
=245​1​
=245​1​
u=245​1​
u=245​1​
u=245​1​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into u2−v2=0
Remove the ones that don't agree with the equation.
Check the solution True
u2−v2=0
Plug in
Refine0=0
True
Check the solution True
u2−v2=0
Plug in
Refine0=0
True
Check the solutions by plugging them into 2uv=−42​​
Remove the ones that don't agree with the equation.
Check the solution True
2uv=−42​​
Plug in
Refine−42​​=−42​​
True
Check the solution True
2uv=−42​​
Plug in
Refine−42​​=−42​​
True
Therefore, the final solutions for u2−v2=0,2uv=−42​​ are
Substitute back w=u+vi
The solutions are
Substitute back w=sin(x)
No Solution
Simplify
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
Multiply: 1i=i
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​
Rationalize
Multiply by the conjugate 243​243​​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=4243​(1+i)​
=4243​(1+i)​
Rewrite 4243​(1+i)​ in standard complex form: 4243​​+4243​​i
4243​(1+i)​
Factor 4:22
Factor 4=22
=22243​(1+i)​
Cancel 22243​(1+i)​:245​1+i​
22243​(1+i)​
Apply exponent rule: xbxa​=xb−a1​22243​​=22−43​1​=22−43​1+i​
Subtract the numbers: 2−43​=45​=245​1+i​
=245​1+i​
245​
245​=21+41​=21+41​
Apply exponent rule: xa+b=xaxb=21⋅241​
Refine
Apply the fraction rule: ca±b​=ca​±cb​
Multiply by the conjugate 243​243​​
1⋅243​=243​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=4243​​
Multiply by the conjugate 243​243​​
1⋅243​=243​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=4243​​
=4243​​+4243​​i
=4243​​+4243​​i
NoSolution
No Solution
Simplify
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
Multiply: 1⋅225​=225​
Cancel
Apply exponent rule: xbxa​=xa−b2225​​=225​−1
Subtract the numbers: 25​−1=23​
Cancel
Apply radical rule: =241​223​​
Apply exponent rule: xbxa​=xa−b241​223​​=223​−41​=223​−41​
Subtract the numbers: 23​−41​=45​=245​
=245​
245​
245​=21+41​=21+41​
Apply exponent rule: xa+b=xaxb=21⋅241​
Refine
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
Multiply: 1i=i
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​
Rationalize
Multiply by the conjugate 243​243​​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=4243​(−1−i)​
=4243​(−1−i)​
Rewrite 4243​(−1−i)​ in standard complex form: −4243​​−4243​​i
4243​(−1−i)​
Factor 4:22
Factor 4=22
=22243​(−1−i)​
Cancel 22243​(−1−i)​:245​−1−i​
22243​(−1−i)​
Apply exponent rule: xbxa​=xb−a1​22243​​=22−43​1​=22−43​−1−i​
Subtract the numbers: 2−43​=45​=245​−1−i​
=245​−1−i​
245​
245​=21+41​=21+41​
Apply exponent rule: xa+b=xaxb=21⋅241​
Refine
Apply the fraction rule: ca±b​=ca​±cb​
Multiply by the conjugate 243​243​​
1⋅243​=243​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=−4243​​
Multiply by the conjugate 243​243​​
1⋅243​=243​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=−4243​​
=−4243​​−4243​​i
=−4243​​−4243​​i
NoSolution
No Solution
Simplify
245​
245​=21+41​=21+41​
Apply exponent rule: xa+b=xaxb=21⋅241​
Refine
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
Multiply: 1i=i
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​
Rationalize
Multiply by the conjugate 243​243​​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=4243​(−1+i)​
=4243​(−1+i)​
Rewrite 4243​(−1+i)​ in standard complex form: −4243​​+4243​​i
4243​(−1+i)​
Factor 4:22
Factor 4=22
=22243​(−1+i)​
Cancel 22243​(−1+i)​:245​−1+i​
22243​(−1+i)​
Apply exponent rule: xbxa​=xb−a1​22243​​=22−43​1​=22−43​−1+i​
Subtract the numbers: 2−43​=45​=245​−1+i​
=245​−1+i​
245​
245​=21+41​=21+41​
Apply exponent rule: xa+b=xaxb=21⋅241​
Refine
Apply the fraction rule: ca±b​=ca​±cb​
Multiply by the conjugate 243​243​​
1⋅243​=243​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=4243​​
Multiply by the conjugate 243​243​​
1⋅243​=243​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=−4243​​
=−4243​​+4243​​i
=−4243​​+4243​​i
NoSolution
No Solution
Simplify
245​
245​=21+41​=21+41​
Apply exponent rule: xa+b=xaxb=21⋅241​
Refine
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
Multiply: 1i=i
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​
Rationalize
Multiply by the conjugate 243​243​​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=4243​(1−i)​
=4243​(1−i)​
Rewrite 4243​(1−i)​ in standard complex form: 4243​​−4243​​i
4243​(1−i)​
Factor 4:22
Factor 4=22
=22243​(1−i)​
Cancel 22243​(1−i)​:245​1−i​
22243​(1−i)​
Apply exponent rule: xbxa​=xb−a1​22243​​=22−43​1​=22−43​1−i​
Subtract the numbers: 2−43​=45​=245​1−i​
=245​1−i​
245​
245​=21+41​=21+41​
Apply exponent rule: xa+b=xaxb=21⋅241​
Refine
Apply the fraction rule: ca±b​=ca​±cb​
Multiply by the conjugate 243​243​​
1⋅243​=243​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=−4243​​
Multiply by the conjugate 243​243​​
1⋅243​=243​
Apply exponent rule: ab⋅ac=ab+c=21+43​+41​
Join 1+43​+41​:2
1+43​+41​
Convert element to fraction: 1=11​=11​+43​+41​
Least Common Multiplier of 1,4,4:4
1,4,4
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Compute a number comprised of factors that appear in at least one of the following:
1,4,4
=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 11​:multiply the denominator and numerator by 411​=1⋅41⋅4​=44​
=44​+43​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=44+3+1​
Add the numbers: 4+3+1=8=48​
Divide the numbers: 48​=2=2
=22
22=4=4
=4243​​
=4243​​−4243​​i
=4243​​−4243​​i
NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)=0.321sin(x+75)=(sqrt(3))/2tan(x/6)+sqrt(3)=0solvefor k,6(-cos(k/2)+1)=1.5tan(x)=sqrt(3),0<= x<2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^4(x)=-1/8 ?

    The general solution for sin^4(x)=-1/8 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024