Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2+sqrt(3)sec(x)-4cos(x)=2sqrt(3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2+3​sec(x)−4cos(x)=23​

Solution

x=3π​+2πn,x=35π​+2πn,x=65π​+2πn,x=67π​+2πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n,x=150∘+360∘n,x=210∘+360∘n
Solution steps
2+3​sec(x)−4cos(x)=23​
Subtract 23​ from both sides2+3​sec(x)−4cos(x)−23​=0
Rewrite using trig identities
2−23​−4cos(x)+sec(x)3​
Use the basic trigonometric identity: cos(x)=sec(x)1​=2−23​−4⋅sec(x)1​+sec(x)3​
4⋅sec(x)1​=sec(x)4​
4⋅sec(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sec(x)1⋅4​
Multiply the numbers: 1⋅4=4=sec(x)4​
=2−23​−sec(x)4​+3​sec(x)
2−sec(x)4​−23​+sec(x)3​=0
Solve by substitution
2−sec(x)4​−23​+sec(x)3​=0
Let: sec(x)=u2−u4​−23​+u3​=0
2−u4​−23​+u3​=0:u=2,u=−323​​
2−u4​−23​+u3​=0
Multiply both sides by u
2−u4​−23​+u3​=0
Multiply both sides by u2u−u4​u−23​u+u3​u=0⋅u
Simplify
2u−u4​u−23​u+u3​u=0⋅u
Simplify −u4​u:−4
−u4​u
Multiply fractions: a⋅cb​=ca⋅b​=−u4u​
Cancel the common factor: u=−4
Simplify u3​u:3​u2
u3​u
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=3​u1+1
Add the numbers: 1+1=2=3​u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
2u−4−23​u+3​u2=0
2u−4−23​u+3​u2=0
2u−4−23​u+3​u2=0
Solve 2u−4−23​u+3​u2=0:u=2,u=−323​​
2u−4−23​u+3​u2=0
Write in the standard form ax2+bx+c=03​u2+(2−23​)u−4=0
Solve with the quadratic formula
3​u2+(2−23​)u−4=0
Quadratic Equation Formula:
For a=3​,b=2−23​,c=−4u1,2​=23​−(2−23​)±(2−23​)2−43​(−4)​​
u1,2​=23​−(2−23​)±(2−23​)2−43​(−4)​​
(2−23​)2−43​(−4)​=23​+2
(2−23​)2−43​(−4)​
Apply rule −(−a)=a=(2−23​)2+43​⋅4​
Multiply the numbers: 4⋅4=16=(2−23​)2+163​​
Expand (2−23​)2+163​:16+83​
(2−23​)2+163​
(2−23​)2:16−83​
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2,b=23​
=22−2⋅2⋅23​+(23​)2
Simplify 22−2⋅2⋅23​+(23​)2:16−83​
22−2⋅2⋅23​+(23​)2
22=4
22
22=4=4
2⋅2⋅23​=83​
2⋅2⋅23​
Multiply the numbers: 2⋅2⋅2=8=83​
(23​)2=12
(23​)2
Apply exponent rule: (a⋅b)n=anbn=22(3​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22⋅3
22=4=4⋅3
Multiply the numbers: 4⋅3=12=12
=4−83​+12
Add the numbers: 4+12=16=16−83​
=16−83​
=16−83​+163​
Add similar elements: −83​+163​=83​=16+83​
=16+83​​
=12+83​+4​
=4⋅3+83​+4​
=(4​)2(3​)2+83​+(4​)2​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=22(3​)2+83​+22​
2⋅23​⋅2=83​
2⋅23​⋅2
Multiply the numbers: 2⋅2⋅2=8=83​
=(23​)2+2⋅23​⋅2+22​
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2(23​)2+2⋅23​⋅2+22=(23​+2)2=(23​+2)2​
Apply radical rule: (23​+2)2​=23​+2=23​+2
u1,2​=23​−(2−23​)±(23​+2)​
Separate the solutionsu1​=23​−(2−23​)+23​+2​,u2​=23​−(2−23​)−(23​+2)​
u=23​−(2−23​)+23​+2​:2
23​−(2−23​)+23​+2​
Expand −(2−23​)+23​+2:43​
−(2−23​)+23​+2
−(2−23​):−2+23​
−(2−23​)
Distribute parentheses=−(2)−(−23​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2+23​
=−2+23​+23​+2
Simplify −2+23​+23​+2:43​
−2+23​+23​+2
Add similar elements: 23​+23​=43​=−2+43​+2
−2+2=0=43​
=43​
=23​43​​
Divide the numbers: 24​=2=3​23​​
Cancel the common factor: 3​=2
u=23​−(2−23​)−(23​+2)​:−323​​
23​−(2−23​)−(23​+2)​
Expand −(2−23​)−(23​+2):−4
−(2−23​)−(23​+2)
−(2−23​):−2+23​
−(2−23​)
Distribute parentheses=−(2)−(−23​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2+23​
=−2+23​−(23​+2)
−(23​+2):−23​−2
−(23​+2)
Distribute parentheses=−(23​)−(2)
Apply minus-plus rules+(−a)=−a=−23​−2
=−2+23​−23​−2
Simplify −2+23​−23​−2:−4
−2+23​−23​−2
Add similar elements: 23​−23​=0=−2−2
Subtract the numbers: −2−2=−4=−4
=−4
=23​−4​
Apply the fraction rule: b−a​=−ba​=−23​4​
Divide the numbers: 24​=2=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
The solutions to the quadratic equation are:u=2,u=−323​​
u=2,u=−323​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 2−u4​−23​+u3​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2,u=−323​​
Substitute back u=sec(x)sec(x)=2,sec(x)=−323​​
sec(x)=2,sec(x)=−323​​
sec(x)=2:x=3π​+2πn,x=35π​+2πn
sec(x)=2
General solutions for sec(x)=2
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
sec(x)=−323​​:x=65π​+2πn,x=67π​+2πn
sec(x)=−323​​
General solutions for sec(x)=−323​​
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=65π​+2πn,x=67π​+2πn
x=65π​+2πn,x=67π​+2πn
Combine all the solutionsx=3π​+2πn,x=35π​+2πn,x=65π​+2πn,x=67π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin(x)*cos(x)=2sin(x)cos(θ)=0.8701tan(x)=(25.644)/(106.372)-1=2cos(2θ)tan(x)= 10/12
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024