Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(θ)csc(3θ-40)=1,calculetan(3θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(θ)csc(3θ−40)=1,calculetan(3θ)

Solution

NoSolutionforθ∈R
Solution steps
sin(θ)csc(3θ−40)=1,calculetan(3θ)
Subtract 1 from both sidessin(θ)csc(3θ−40)−1=0
Express with sin, cos
−1+csc(−40+3θ)sin(θ)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−1+sin(−40+3θ)1​sin(θ)
Simplify −1+sin(−40+3θ)1​sin(θ):sin(−40+3θ)−sin(−40+3θ)+sin(θ)​
−1+sin(−40+3θ)1​sin(θ)
sin(−40+3θ)1​sin(θ)=sin(−40+3θ)sin(θ)​
sin(−40+3θ)1​sin(θ)
Multiply fractions: a⋅cb​=ca⋅b​=sin(−40+3θ)1⋅sin(θ)​
Multiply: 1⋅sin(θ)=sin(θ)=sin(−40+3θ)sin(θ)​
=−1+sin(3θ−40)sin(θ)​
Convert element to fraction: 1=sin(−40+3θ)1sin(−40+3θ)​=−sin(−40+3θ)1⋅sin(−40+3θ)​+sin(−40+3θ)sin(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(−40+3θ)−1⋅sin(−40+3θ)+sin(θ)​
Multiply: 1⋅sin(−40+3θ)=sin(−40+3θ)=sin(−40+3θ)−sin(3θ−40)+sin(θ)​
=sin(−40+3θ)−sin(−40+3θ)+sin(θ)​
sin(−40+3θ)−sin(−40+3θ)+sin(θ)​=0
g(x)f(x)​=0⇒f(x)=0−sin(−40+3θ)+sin(θ)=0
Rewrite using trig identities
−sin(−40+3θ)+sin(θ)
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=2sin(2θ−(−40+3θ)​)cos(2θ−40+3θ​)
Simplify 2sin(2θ−(−40+3θ)​)cos(2θ−40+3θ​):2sin(−θ+20)cos(2(θ−10))
2sin(2θ−(−40+3θ)​)cos(2θ−40+3θ​)
2θ−(−40+3θ)​=−θ+20
2θ−(−40+3θ)​
Expand θ−(−40+3θ):−2θ+40
θ−(−40+3θ)
−(−40+3θ):40−3θ
−(−40+3θ)
Distribute parentheses=−(−40)−(3θ)
Apply minus-plus rules−(−a)=a,−(a)=−a=40−3θ
=θ+40−3θ
Simplify θ+40−3θ:−2θ+40
θ+40−3θ
Group like terms=θ−3θ+40
Add similar elements: θ−3θ=−2θ=−2θ+40
=−2θ+40
=2−2θ+40​
Factor −2θ+40:2(−θ+20)
−2θ+40
Rewrite as=−2θ+2⋅20
Factor out common term 2=2(−θ+20)
=22(−θ+20)​
Divide the numbers: 22​=1=−θ+20
=2sin((−θ+20))cos(2θ+3θ−40​)
2θ−40+3θ​=2(θ−10)
2θ−40+3θ​
θ−40+3θ=4θ−40
θ−40+3θ
Group like terms=θ+3θ−40
Add similar elements: θ+3θ=4θ=4θ−40
=24θ−40​
Factor 4θ−40:4(θ−10)
4θ−40
Rewrite as=4θ−4⋅10
Factor out common term 4=4(θ−10)
=24(θ−10)​
Divide the numbers: 24​=2=2(θ−10)
=2sin((−θ+20))cos(2(θ−10))
Remove parentheses: (−a)=−a=2sin(−θ+20)cos(2(θ−10))
=2sin(−θ+20)cos(2(θ−10))
2cos((−10+θ)⋅2)sin(20−θ)=0
Solving each part separatelycos((−10+θ)⋅2)=0orsin(20−θ)=0
cos((−10+θ)⋅2)=0,calculetan(3θ):No Solution
cos((−10+θ)⋅2)=0,calculetan(3θ)
General solutions for cos((−10+θ)2)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
(−10+θ)⋅2=2π​+2πn,(−10+θ)⋅2=23π​+2πn
(−10+θ)⋅2=2π​+2πn,(−10+θ)⋅2=23π​+2πn
Solve (−10+θ)2=2π​+2πn:θ=4π​+πn+10
(−10+θ)⋅2=2π​+2πn
Divide both sides by 2
(−10+θ)⋅2=2π​+2πn
Divide both sides by 22(−10+θ)⋅2​=22π​​+22πn​
Simplify
2(−10+θ)⋅2​=22π​​+22πn​
Simplify 2(−10+θ)⋅2​:−10+θ
2(−10+θ)⋅2​
Divide the numbers: 22​=1=−10+θ
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
−10+θ=4π​+πn
−10+θ=4π​+πn
−10+θ=4π​+πn
Move 10to the right side
−10+θ=4π​+πn
Add 10 to both sides−10+θ+10=4π​+πn+10
Simplifyθ=4π​+πn+10
θ=4π​+πn+10
Solve (−10+θ)2=23π​+2πn:θ=43π​+πn+10
(−10+θ)⋅2=23π​+2πn
Divide both sides by 2
(−10+θ)⋅2=23π​+2πn
Divide both sides by 22(−10+θ)⋅2​=223π​​+22πn​
Simplify
2(−10+θ)⋅2​=223π​​+22πn​
Simplify 2(−10+θ)⋅2​:−10+θ
2(−10+θ)⋅2​
Divide the numbers: 22​=1=−10+θ
Simplify 223π​​+22πn​:43π​+πn
223π​​+22πn​
223π​​=43π​
223π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π​
Multiply the numbers: 2⋅2=4=43π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=43π​+πn
−10+θ=43π​+πn
−10+θ=43π​+πn
−10+θ=43π​+πn
Move 10to the right side
−10+θ=43π​+πn
Add 10 to both sides−10+θ+10=43π​+πn+10
Simplifyθ=43π​+πn+10
θ=43π​+πn+10
θ=4π​+πn+10,θ=43π​+πn+10
Solutions for the range calculetan(3θ)NoSolution
sin(20−θ)=0,calculetan(3θ):No Solution
sin(20−θ)=0,calculetan(3θ)
General solutions for sin(20−θ)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
20−θ=0+2πn,20−θ=π+2πn
20−θ=0+2πn,20−θ=π+2πn
Solve 20−θ=0+2πn:θ=−2πn+20
20−θ=0+2πn
0+2πn=2πn20−θ=2πn
Move 20to the right side
20−θ=2πn
Subtract 20 from both sides20−θ−20=2πn−20
Simplify−θ=2πn−20
−θ=2πn−20
Divide both sides by −1
−θ=2πn−20
Divide both sides by −1−1−θ​=−12πn​−−120​
Simplify
−1−θ​=−12πn​−−120​
Simplify −1−θ​:θ
−1−θ​
Apply the fraction rule: −b−a​=ba​=1θ​
Apply rule 1a​=a=θ
Simplify −12πn​−−120​:−2πn+20
−12πn​−−120​
−12πn​=−2πn
−12πn​
Apply the fraction rule: −ba​=−ba​=−12πn​
Apply rule 1a​=a=−2πn
=−2πn−−120​
−120​=−20
−120​
Apply the fraction rule: −ba​=−ba​=−120​
Apply rule 1a​=a=−20
=−2πn−(−20)
Apply rule −(−a)=a=−2πn+20
θ=−2πn+20
θ=−2πn+20
θ=−2πn+20
Solve 20−θ=π+2πn:θ=−π+20−2πn
20−θ=π+2πn
Move 20to the right side
20−θ=π+2πn
Subtract 20 from both sides20−θ−20=π+2πn−20
Simplify−θ=π+2πn−20
−θ=π+2πn−20
Divide both sides by −1
−θ=π+2πn−20
Divide both sides by −1−1−θ​=−1π​+−12πn​−−120​
Simplify
−1−θ​=−1π​+−12πn​−−120​
Simplify −1−θ​:θ
−1−θ​
Apply the fraction rule: −b−a​=ba​=1θ​
Apply rule 1a​=a=θ
Simplify −1π​+−12πn​−−120​:−π+20−2πn
−1π​+−12πn​−−120​
Group like terms=−1π​−−120​+−12πn​
−1π​=−π
−1π​
Apply the fraction rule: −ba​=−ba​=−1π​
Apply rule 1a​=a=−π
=−π−−120​+−12πn​
−120​=−20
−120​
Apply the fraction rule: −ba​=−ba​=−120​
Apply rule 1a​=a=−20
−12πn​=−2πn
−12πn​
Apply the fraction rule: −ba​=−ba​=−12πn​
Apply rule 1a​=a=−2πn
=−π−(−20)−2πn
Apply rule −(−a)=a=−π+20−2πn
θ=−π+20−2πn
θ=−π+20−2πn
θ=−π+20−2πn
θ=−2πn+20,θ=−π+20−2πn
Solutions for the range calculetan(3θ)NoSolution
Combine all the solutionsNoSolutionforθ∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)+5cos(x)-6=0solvefor x,sin(x)=-7/251/(tan(α))+tan(α)= 1/(sin(α))8sin^2(x)-1=5csc(θ)= 17/8

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(θ)csc(3θ-40)=1,calculetan(3θ) ?

    The general solution for sin(θ)csc(3θ-40)=1,calculetan(3θ) is No Solution for θ\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024