Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x-45)-tan(x+45)=4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x−45∘)−tan(x+45∘)=4

Solution

x=120∘+180∘n,x=60∘+180∘n
+1
Radians
x=32π​+πn,x=3π​+πn
Solution steps
tan(x−45∘)−tan(x+45∘)=4
Rewrite using trig identities
tan(x−45∘)−tan(x+45∘)=4
Rewrite using trig identities
tan(x−45∘)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x−45∘)sin(x−45∘)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(x−45∘)sin(x)cos(45∘)−cos(x)sin(45∘)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(x)cos(45∘)+sin(x)sin(45∘)sin(x)cos(45∘)−cos(x)sin(45∘)​
Simplify cos(x)cos(45∘)+sin(x)sin(45∘)sin(x)cos(45∘)−cos(x)sin(45∘)​:cos(x)+sin(x)sin(x)−cos(x)​
cos(x)cos(45∘)+sin(x)sin(45∘)sin(x)cos(45∘)−cos(x)sin(45∘)​
sin(x)cos(45∘)−cos(x)sin(45∘)=22​​sin(x)−22​​cos(x)
sin(x)cos(45∘)−cos(x)sin(45∘)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(x)−sin(45∘)cos(x)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​sin(x)−22​​cos(x)
=cos(45∘)cos(x)+sin(45∘)sin(x)22​​sin(x)−22​​cos(x)​
cos(x)cos(45∘)+sin(x)sin(45∘)=22​​cos(x)+22​​sin(x)
cos(x)cos(45∘)+sin(x)sin(45∘)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)+sin(45∘)sin(x)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)+22​​sin(x)
=22​​cos(x)+22​​sin(x)22​​sin(x)−22​​cos(x)​
Multiply cos(x)22​​:22​cos(x)​
cos(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​+22​​sin(x)22​​sin(x)−22​​cos(x)​
Multiply sin(x)22​​:22​sin(x)​
sin(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​22​​sin(x)−22​​cos(x)​
Multiply sin(x)22​​:22​sin(x)​
sin(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​+22​sin(x)​22​sin(x)​−22​​cos(x)​
Multiply cos(x)22​​:22​cos(x)​
cos(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​+22​sin(x)​22​sin(x)​−22​cos(x)​​
Combine the fractions 22​cos(x)​+22​sin(x)​:22​cos(x)+2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)+2​sin(x)​22​sin(x)​−22​cos(x)​​
Combine the fractions 22​sin(x)​−22​cos(x)​:22​sin(x)−2​cos(x)​
Apply rule ca​±cb​=ca±b​=22​sin(x)−2​cos(x)​
=22​cos(x)+2​sin(x)​22​sin(x)−2​cos(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)+2​sin(x))(2​sin(x)−2​cos(x))⋅2​
Cancel the common factor: 2=2​cos(x)+2​sin(x)2​sin(x)−2​cos(x)​
Factor out common term 2​=2​cos(x)+2​sin(x)2​(sin(x)−cos(x))​
Factor out common term 2​=2​(cos(x)+sin(x))2​(sin(x)−cos(x))​
Cancel the common factor: 2​=cos(x)+sin(x)sin(x)−cos(x)​
=cos(x)+sin(x)sin(x)−cos(x)​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x+45∘)sin(x+45∘)​
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(x+45∘)sin(x)cos(45∘)+cos(x)sin(45∘)​
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)​
Simplify cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)​:cos(x)−sin(x)sin(x)+cos(x)​
cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)​
sin(x)cos(45∘)+cos(x)sin(45∘)=22​​sin(x)+22​​cos(x)
sin(x)cos(45∘)+cos(x)sin(45∘)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(x)+sin(45∘)cos(x)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​sin(x)+22​​cos(x)
=cos(45∘)cos(x)−sin(45∘)sin(x)22​​sin(x)+22​​cos(x)​
cos(x)cos(45∘)−sin(x)sin(45∘)=22​​cos(x)−22​​sin(x)
cos(x)cos(45∘)−sin(x)sin(45∘)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−sin(45∘)sin(x)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−22​​sin(x)
=22​​cos(x)−22​​sin(x)22​​sin(x)+22​​cos(x)​
Multiply cos(x)22​​:22​cos(x)​
cos(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​​sin(x)22​​sin(x)+22​​cos(x)​
Multiply sin(x)22​​:22​sin(x)​
sin(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​​sin(x)+22​​cos(x)​
Multiply sin(x)22​​:22​sin(x)​
sin(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​sin(x)​+22​​cos(x)​
Multiply cos(x)22​​:22​cos(x)​
cos(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​sin(x)​22​sin(x)​+22​cos(x)​​
Combine the fractions 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)−2​sin(x)​22​sin(x)​+22​cos(x)​​
Combine the fractions 22​sin(x)​+22​cos(x)​:22​sin(x)+2​cos(x)​
Apply rule ca​±cb​=ca±b​=22​sin(x)+2​cos(x)​
=22​cos(x)−2​sin(x)​22​sin(x)+2​cos(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)−2​sin(x))(2​sin(x)+2​cos(x))⋅2​
Cancel the common factor: 2=2​cos(x)−2​sin(x)2​sin(x)+2​cos(x)​
Factor out common term 2​=2​cos(x)−2​sin(x)2​(sin(x)+cos(x))​
Factor out common term 2​=2​(cos(x)−sin(x))2​(sin(x)+cos(x))​
Cancel the common factor: 2​=cos(x)−sin(x)sin(x)+cos(x)​
=cos(x)−sin(x)sin(x)+cos(x)​
cos(x)+sin(x)sin(x)−cos(x)​−cos(x)−sin(x)sin(x)+cos(x)​=4
Simplify cos(x)+sin(x)sin(x)−cos(x)​−cos(x)−sin(x)sin(x)+cos(x)​:(cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)​
cos(x)+sin(x)sin(x)−cos(x)​−cos(x)−sin(x)sin(x)+cos(x)​
Least Common Multiplier of cos(x)+sin(x),cos(x)−sin(x):(cos(x)+sin(x))(cos(x)−sin(x))
cos(x)+sin(x),cos(x)−sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x)+sin(x) or cos(x)−sin(x)=(cos(x)+sin(x))(cos(x)−sin(x))
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM (cos(x)+sin(x))(cos(x)−sin(x))
For cos(x)+sin(x)sin(x)−cos(x)​:multiply the denominator and numerator by cos(x)−sin(x)cos(x)+sin(x)sin(x)−cos(x)​=(cos(x)+sin(x))(cos(x)−sin(x))(sin(x)−cos(x))(cos(x)−sin(x))​
For cos(x)−sin(x)sin(x)+cos(x)​:multiply the denominator and numerator by cos(x)+sin(x)cos(x)−sin(x)sin(x)+cos(x)​=(cos(x)−sin(x))(cos(x)+sin(x))(sin(x)+cos(x))(cos(x)+sin(x))​=(cos(x)+sin(x))(cos(x)−sin(x))(sin(x)+cos(x))2​
=(cos(x)+sin(x))(cos(x)−sin(x))(sin(x)−cos(x))(cos(x)−sin(x))​−(cos(x)+sin(x))(cos(x)−sin(x))(sin(x)+cos(x))2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(cos(x)+sin(x))(cos(x)−sin(x))(sin(x)−cos(x))(cos(x)−sin(x))−(sin(x)+cos(x))2​
Expand (sin(x)−cos(x))(cos(x)−sin(x))−(sin(x)+cos(x))2:−2sin2(x)−2cos2(x)
(sin(x)−cos(x))(cos(x)−sin(x))−(sin(x)+cos(x))2
(sin(x)+cos(x))2:sin2(x)+2sin(x)cos(x)+cos2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=sin(x),b=cos(x)
=sin2(x)+2sin(x)cos(x)+cos2(x)
=(sin(x)−cos(x))(cos(x)−sin(x))−(sin2(x)+2sin(x)cos(x)+cos2(x))
Expand (sin(x)−cos(x))(cos(x)−sin(x)):2cos(x)sin(x)−sin2(x)−cos2(x)
(sin(x)−cos(x))(cos(x)−sin(x))
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=sin(x),b=−cos(x),c=cos(x),d=−sin(x)=sin(x)cos(x)+sin(x)(−sin(x))+(−cos(x))cos(x)+(−cos(x))(−sin(x))
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=sin(x)cos(x)−sin(x)sin(x)−cos(x)cos(x)+cos(x)sin(x)
Simplify sin(x)cos(x)−sin(x)sin(x)−cos(x)cos(x)+cos(x)sin(x):2cos(x)sin(x)−sin2(x)−cos2(x)
sin(x)cos(x)−sin(x)sin(x)−cos(x)cos(x)+cos(x)sin(x)
Add similar elements: sin(x)cos(x)+cos(x)sin(x)=2cos(x)sin(x)=2cos(x)sin(x)−sin(x)sin(x)−cos(x)cos(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=2cos(x)sin(x)−sin2(x)−cos2(x)
=2cos(x)sin(x)−sin2(x)−cos2(x)
=2cos(x)sin(x)−sin2(x)−cos2(x)−(sin2(x)+2sin(x)cos(x)+cos2(x))
−(sin2(x)+2sin(x)cos(x)+cos2(x)):−sin2(x)−2sin(x)cos(x)−cos2(x)
−(sin2(x)+2sin(x)cos(x)+cos2(x))
Distribute parentheses=−(sin2(x))−(2sin(x)cos(x))−(cos2(x))
Apply minus-plus rules+(−a)=−a=−sin2(x)−2sin(x)cos(x)−cos2(x)
=2cos(x)sin(x)−sin2(x)−cos2(x)−sin2(x)−2sin(x)cos(x)−cos2(x)
Simplify 2cos(x)sin(x)−sin2(x)−cos2(x)−sin2(x)−2sin(x)cos(x)−cos2(x):−2sin2(x)−2cos2(x)
2cos(x)sin(x)−sin2(x)−cos2(x)−sin2(x)−2sin(x)cos(x)−cos2(x)
Add similar elements: 2cos(x)sin(x)−2sin(x)cos(x)=0=−sin2(x)−cos2(x)−sin2(x)−cos2(x)
Add similar elements: −cos2(x)−cos2(x)=−2cos2(x)=−sin2(x)−2cos2(x)−sin2(x)
Add similar elements: −sin2(x)−sin2(x)=−2sin2(x)=−2sin2(x)−2cos2(x)
=−2sin2(x)−2cos2(x)
=(cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)​=4
(cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)​=4
Subtract 4 from both sides(cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)​−4=0
Simplify (cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)​−4:(cos(x)+sin(x))(cos(x)−sin(x))2sin2(x)−6cos2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)​−4
Convert element to fraction: 4=(cos(x)+sin(x))(cos(x)−sin(x))4(cos(x)+sin(x))(cos(x)−sin(x))​=(cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)​−(cos(x)+sin(x))(cos(x)−sin(x))4(cos(x)+sin(x))(cos(x)−sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(cos(x)+sin(x))(cos(x)−sin(x))−2sin2(x)−2cos2(x)−4(cos(x)+sin(x))(cos(x)−sin(x))​
Expand −2sin2(x)−2cos2(x)−4(cos(x)+sin(x))(cos(x)−sin(x)):2sin2(x)−6cos2(x)
−2sin2(x)−2cos2(x)−4(cos(x)+sin(x))(cos(x)−sin(x))
Expand −4(cos(x)+sin(x))(cos(x)−sin(x)):−4cos2(x)+4sin2(x)
Expand (cos(x)+sin(x))(cos(x)−sin(x)):cos2(x)−sin2(x)
(cos(x)+sin(x))(cos(x)−sin(x))
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=cos(x),b=sin(x)=cos2(x)−sin2(x)
=−4(cos2(x)−sin2(x))
Expand −4(cos2(x)−sin2(x)):−4cos2(x)+4sin2(x)
−4(cos2(x)−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−4,b=cos2(x),c=sin2(x)=−4cos2(x)−(−4)sin2(x)
Apply minus-plus rules−(−a)=a=−4cos2(x)+4sin2(x)
=−4cos2(x)+4sin2(x)
=−2sin2(x)−2cos2(x)−4cos2(x)+4sin2(x)
Simplify −2sin2(x)−2cos2(x)−4cos2(x)+4sin2(x):2sin2(x)−6cos2(x)
−2sin2(x)−2cos2(x)−4cos2(x)+4sin2(x)
Add similar elements: −2cos2(x)−4cos2(x)=−6cos2(x)=−2sin2(x)−6cos2(x)+4sin2(x)
Add similar elements: −2sin2(x)+4sin2(x)=2sin2(x)=2sin2(x)−6cos2(x)
=2sin2(x)−6cos2(x)
=(cos(x)+sin(x))(cos(x)−sin(x))2sin2(x)−6cos2(x)​
(cos(x)+sin(x))(cos(x)−sin(x))2sin2(x)−6cos2(x)​=0
g(x)f(x)​=0⇒f(x)=02sin2(x)−6cos2(x)=0
Factor 2sin2(x)−6cos2(x):2(sin(x)+3​cos(x))(sin(x)−3​cos(x))
2sin2(x)−6cos2(x)
Rewrite −6 as 3⋅2=2sin2(x)+3⋅2cos2(x)
Factor out common term 2=2(sin2(x)−3cos2(x))
Factor sin2(x)−3cos2(x):(sin(x)+3​cos(x))(sin(x)−3​cos(x))
sin2(x)−3cos2(x)
Rewrite sin2(x)−3cos2(x) as sin2(x)−(3​cos(x))2
sin2(x)−3cos2(x)
Apply radical rule: a=(a​)23=(3​)2=sin2(x)−(3​)2cos2(x)
Apply exponent rule: ambm=(ab)m(3​)2cos2(x)=(3​cos(x))2=sin2(x)−(3​cos(x))2
=sin2(x)−(3​cos(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(x)−(3​cos(x))2=(sin(x)+3​cos(x))(sin(x)−3​cos(x))=(sin(x)+3​cos(x))(sin(x)−3​cos(x))
=2(sin(x)+3​cos(x))(sin(x)−3​cos(x))
2(sin(x)+3​cos(x))(sin(x)−3​cos(x))=0
Solving each part separatelysin(x)+3​cos(x)=0orsin(x)−3​cos(x)=0
sin(x)+3​cos(x)=0:x=120∘+180∘n
sin(x)+3​cos(x)=0
Rewrite using trig identities
sin(x)+3​cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)+3​cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​+3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)+3​=0
tan(x)+3​=0
Move 3​to the right side
tan(x)+3​=0
Subtract 3​ from both sidestan(x)+3​−3​=0−3​
Simplifytan(x)=−3​
tan(x)=−3​
General solutions for tan(x)=−3​
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
x=120∘+180∘n
x=120∘+180∘n
sin(x)−3​cos(x)=0:x=60∘+180∘n
sin(x)−3​cos(x)=0
Rewrite using trig identities
sin(x)−3​cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−3​cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−3​=0
tan(x)−3​=0
Move 3​to the right side
tan(x)−3​=0
Add 3​ to both sidestan(x)−3​+3​=0+3​
Simplifytan(x)=3​
tan(x)=3​
General solutions for tan(x)=3​
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
x=60∘+180∘n
x=60∘+180∘n
Combine all the solutionsx=120∘+180∘n,x=60∘+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2x)=10cos(x)3-4sin(θ)=4-6sin(θ)tan(x)=-1.036tan(2x)= 24/7solvefor x,80=75-60cos(([pi*x])/(15))

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x-45)-tan(x+45)=4 ?

    The general solution for tan(x-45)-tan(x+45)=4 is x=120+180n,x=60+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024