Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)+tan(x+45)=-2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)+tan(x+45∘)=−2

Solution

x=120∘+180∘n,x=60∘+180∘n
+1
Radians
x=32π​+πn,x=3π​+πn
Solution steps
tan(x)+tan(x+45∘)=−2
Rewrite using trig identities
tan(x)+tan(x+45∘)=−2
Rewrite using trig identities
tan(x+45∘)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x+45∘)sin(x+45∘)​
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(x+45∘)sin(x)cos(45∘)+cos(x)sin(45∘)​
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)​
Simplify cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)​:cos(x)−sin(x)sin(x)+cos(x)​
cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)​
sin(x)cos(45∘)+cos(x)sin(45∘)=22​​sin(x)+22​​cos(x)
sin(x)cos(45∘)+cos(x)sin(45∘)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(x)+sin(45∘)cos(x)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​sin(x)+22​​cos(x)
=cos(45∘)cos(x)−sin(45∘)sin(x)22​​sin(x)+22​​cos(x)​
cos(x)cos(45∘)−sin(x)sin(45∘)=22​​cos(x)−22​​sin(x)
cos(x)cos(45∘)−sin(x)sin(45∘)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−sin(45∘)sin(x)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−22​​sin(x)
=22​​cos(x)−22​​sin(x)22​​sin(x)+22​​cos(x)​
Multiply cos(x)22​​:22​cos(x)​
cos(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​​sin(x)22​​sin(x)+22​​cos(x)​
Multiply sin(x)22​​:22​sin(x)​
sin(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​​sin(x)+22​​cos(x)​
Multiply sin(x)22​​:22​sin(x)​
sin(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​sin(x)​+22​​cos(x)​
Multiply cos(x)22​​:22​cos(x)​
cos(x)22​​
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​sin(x)​22​sin(x)​+22​cos(x)​​
Combine the fractions 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)−2​sin(x)​22​sin(x)​+22​cos(x)​​
Combine the fractions 22​sin(x)​+22​cos(x)​:22​sin(x)+2​cos(x)​
Apply rule ca​±cb​=ca±b​=22​sin(x)+2​cos(x)​
=22​cos(x)−2​sin(x)​22​sin(x)+2​cos(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)−2​sin(x))(2​sin(x)+2​cos(x))⋅2​
Cancel the common factor: 2=2​cos(x)−2​sin(x)2​sin(x)+2​cos(x)​
Factor out common term 2​=2​cos(x)−2​sin(x)2​(sin(x)+cos(x))​
Factor out common term 2​=2​(cos(x)−sin(x))2​(sin(x)+cos(x))​
Cancel the common factor: 2​=cos(x)−sin(x)sin(x)+cos(x)​
=cos(x)−sin(x)sin(x)+cos(x)​
tan(x)+cos(x)−sin(x)sin(x)+cos(x)​=−2
tan(x)+cos(x)−sin(x)sin(x)+cos(x)​=−2
Subtract −2 from both sidestan(x)+cos(x)−sin(x)sin(x)+cos(x)​+2=0
Simplify tan(x)+cos(x)−sin(x)sin(x)+cos(x)​+2:cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)​
tan(x)+cos(x)−sin(x)sin(x)+cos(x)​+2
Convert element to fraction: tan(x)=cos(x)−sin(x)tan(x)(cos(x)−sin(x))​,2=cos(x)−sin(x)2(cos(x)−sin(x))​=cos(x)−sin(x)tan(x)(cos(x)−sin(x))​+cos(x)−sin(x)sin(x)+cos(x)​+cos(x)−sin(x)2(cos(x)−sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−sin(x)tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x))​
Expand tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x)):tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x))
Expand tan(x)(cos(x)−sin(x)):tan(x)cos(x)−tan(x)sin(x)
tan(x)(cos(x)−sin(x))
Apply the distributive law: a(b−c)=ab−aca=tan(x),b=cos(x),c=sin(x)=tan(x)cos(x)−tan(x)sin(x)
=tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2(cos(x)−sin(x))
Expand 2(cos(x)−sin(x)):2cos(x)−2sin(x)
2(cos(x)−sin(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=cos(x),c=sin(x)=2cos(x)−2sin(x)
=tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x)
Simplify tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x):tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x)
Add similar elements: cos(x)+2cos(x)=3cos(x)=tan(x)cos(x)−tan(x)sin(x)+sin(x)+3cos(x)−2sin(x)
Add similar elements: sin(x)−2sin(x)=−sin(x)=tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
=tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
=cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)​
cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)​=0
g(x)f(x)​=0⇒f(x)=0tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)=0
Express with sin, cos
−sin(x)+3cos(x)+cos(x)tan(x)−sin(x)tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(x)+3cos(x)+cos(x)cos(x)sin(x)​−sin(x)cos(x)sin(x)​
Simplify −sin(x)+3cos(x)+cos(x)cos(x)sin(x)​−sin(x)cos(x)sin(x)​:cos(x)3cos2(x)−sin2(x)​
−sin(x)+3cos(x)+cos(x)cos(x)sin(x)​−sin(x)cos(x)sin(x)​
cos(x)cos(x)sin(x)​=sin(x)
cos(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)cos(x)​
Cancel the common factor: cos(x)=sin(x)
sin(x)cos(x)sin(x)​=cos(x)sin2(x)​
sin(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)sin(x)​
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=cos(x)sin2(x)​
=−sin(x)+3cos(x)+sin(x)−cos(x)sin2(x)​
Add similar elements: −sin(x)+sin(x)=0=3cos(x)−cos(x)sin2(x)​
Convert element to fraction: 3cos(x)=cos(x)3cos(x)cos(x)​=cos(x)3cos(x)cos(x)​−cos(x)sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)3cos(x)cos(x)−sin2(x)​
3cos(x)cos(x)−sin2(x)=3cos2(x)−sin2(x)
3cos(x)cos(x)−sin2(x)
3cos(x)cos(x)=3cos2(x)
3cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=3cos1+1(x)
Add the numbers: 1+1=2=3cos2(x)
=3cos2(x)−sin2(x)
=cos(x)3cos2(x)−sin2(x)​
=cos(x)3cos2(x)−sin2(x)​
cos(x)−sin2(x)+3cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0−sin2(x)+3cos2(x)=0
Factor −sin2(x)+3cos2(x):(3​cos(x)+sin(x))(3​cos(x)−sin(x))
−sin2(x)+3cos2(x)
Rewrite 3cos2(x)−sin2(x) as (3​cos(x))2−sin2(x)
3cos2(x)−sin2(x)
Apply radical rule: a=(a​)23=(3​)2=(3​)2cos2(x)−sin2(x)
Apply exponent rule: ambm=(ab)m(3​)2cos2(x)=(3​cos(x))2=(3​cos(x))2−sin2(x)
=(3​cos(x))2−sin2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​cos(x))2−sin2(x)=(3​cos(x)+sin(x))(3​cos(x)−sin(x))=(3​cos(x)+sin(x))(3​cos(x)−sin(x))
(3​cos(x)+sin(x))(3​cos(x)−sin(x))=0
Solving each part separately3​cos(x)+sin(x)=0or3​cos(x)−sin(x)=0
3​cos(x)+sin(x)=0:x=120∘+180∘n
3​cos(x)+sin(x)=0
Rewrite using trig identities
3​cos(x)+sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)3​cos(x)+sin(x)​=cos(x)0​
Simplify3​+cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)3​+tan(x)=0
3​+tan(x)=0
Move 3​to the right side
3​+tan(x)=0
Subtract 3​ from both sides3​+tan(x)−3​=0−3​
Simplifytan(x)=−3​
tan(x)=−3​
General solutions for tan(x)=−3​
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
x=120∘+180∘n
x=120∘+180∘n
3​cos(x)−sin(x)=0:x=60∘+180∘n
3​cos(x)−sin(x)=0
Rewrite using trig identities
3​cos(x)−sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)3​cos(x)−sin(x)​=cos(x)0​
Simplify3​−cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)3​−tan(x)=0
3​−tan(x)=0
Move 3​to the right side
3​−tan(x)=0
Subtract 3​ from both sides3​−tan(x)−3​=0−3​
Simplify−tan(x)=−3​
−tan(x)=−3​
Divide both sides by −1
−tan(x)=−3​
Divide both sides by −1−1−tan(x)​=−1−3​​
Simplifytan(x)=3​
tan(x)=3​
General solutions for tan(x)=3​
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
x=60∘+180∘n
x=60∘+180∘n
Combine all the solutionsx=120∘+180∘n,x=60∘+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)=(22.5)/(34)tan^2(4x)=0tan(x-45)-tan(x+45)=4sin(2x)=10cos(x)3-4sin(θ)=4-6sin(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)+tan(x+45)=-2 ?

    The general solution for tan(x)+tan(x+45)=-2 is x=120+180n,x=60+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024