Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin((2pi(t+101.75))/(365))=-1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(3652π(t+101.75)​)=−1

Solution

t=364.99999…n+172
+1
Degrees
t=9854.87407…∘+20912.95952…∘n
Solution steps
sin(3652π(t+101.75)​)=−1
General solutions for sin(3652π(t+101.75)​)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
3652π(t+101.75)​=23π​+2πn
3652π(t+101.75)​=23π​+2πn
Solve 3652π(t+101.75)​=23π​+2πn:t=364.99999…n+172
3652π(t+101.75)​=23π​+2πn
Multiply both sides by 365
3652π(t+101.75)​=23π​+2πn
Multiply both sides by 365365365⋅2π(t+101.75)​=365⋅23π​+365⋅2πn
Simplify
365365⋅2π(t+101.75)​=365⋅23π​+365⋅2πn
Simplify 365365⋅2π(t+101.75)​:6.28318…(t+101.75)
365365⋅2π(t+101.75)​
Multiply the numbers: 365⋅2=730=365730π(t+101.75)​
Divide the numbers: 365730​=2=2π(t+101.75)
Multiply the numbers: 2⋅3.14159…=6.28318…=6.28318…(t+101.75)
Simplify 365⋅23π​+365⋅2πn:21095π​+730πn
365⋅23π​+365⋅2πn
365⋅23π​=21095π​
365⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π365​
Multiply the numbers: 3⋅365=1095=21095π​
365⋅2πn=730πn
365⋅2πn
Multiply the numbers: 365⋅2=730=730πn
=21095π​+730πn
6.28318…(t+101.75)=21095π​+730πn
6.28318…(t+101.75)=21095π​+730πn
6.28318…(t+101.75)=21095π​+730πn
Divide both sides by 6.28318…
6.28318…(t+101.75)=21095π​+730πn
Divide both sides by 6.28318…6.28318…6.28318…(t+101.75)​=6.28318…21095π​​+6.28318…730πn​
Simplify
6.28318…6.28318…(t+101.75)​=6.28318…21095π​​+6.28318…730πn​
Simplify 6.28318…6.28318…(t+101.75)​:t+101.75
6.28318…6.28318…(t+101.75)​
Cancel the common factor: 6.28318…=t+101.75
Simplify 6.28318…21095π​​+6.28318…730πn​:273.75+364.99999…n
6.28318…21095π​​+6.28318…730πn​
6.28318…21095π​​=12.56637…1095π​
6.28318…21095π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅6.28318…1095π​
Multiply the numbers: 2⋅6.28318…=12.56637…=12.56637…1095π​
=12.56637…1095π​+6.28318…730πn​
12.56637…1095π​=273.75
12.56637…1095π​
Multiply the numbers: 1095⋅3.14159…=3440.04395…=12.56637…3440.04395…​
Divide the numbers: 12.56637…3440.04395…​=273.75=273.75
6.28318…730πn​=364.99999…n
6.28318…730πn​
Multiply the numbers: 730⋅3.14159…=2293.36263…=6.28318…2293.36263…n​
Divide the numbers: 6.28318…2293.36263…​=364.99999…=364.99999…n
=273.75+364.99999…n
t+101.75=273.75+364.99999…n
t+101.75=273.75+364.99999…n
t+101.75=273.75+364.99999…n
Move 101.75to the right side
t+101.75=273.75+364.99999…n
Subtract 101.75 from both sidest+101.75−101.75=273.75+364.99999…n−101.75
Simplifyt=364.99999…n+172
t=364.99999…n+172
t=364.99999…n+172

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)=-(sqrt(7))/5sin(pi+x)=sin(x)cos(x)=-2/pi5sin(x)=-3csc^2(x)=2*cot^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin((2pi(t+101.75))/(365))=-1 ?

    The general solution for sin((2pi(t+101.75))/(365))=-1 is t=364.99999…n+172
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024