Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(cos(x))+sec^2(x)-1-cos(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)1​+sec2(x)−1−cos(x)=0

Solution

x=π+2πn,x=2πn
+1
Degrees
x=180∘+360∘n,x=0∘+360∘n
Solution steps
cos(x)1​+sec2(x)−1−cos(x)=0
Simplify cos(x)1​+sec2(x)−1−cos(x):cos(x)1+sec2(x)cos(x)−cos(x)−cos2(x)​
cos(x)1​+sec2(x)−1−cos(x)
Convert element to fraction: sec2(x)=cos(x)sec2(x)cos(x)​,1=cos(x)1cos(x)​,cos(x)=cos(x)cos(x)cos(x)​=cos(x)1​+cos(x)sec2(x)cos(x)​−cos(x)1⋅cos(x)​−cos(x)cos(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1+sec2(x)cos(x)−1⋅cos(x)−cos(x)cos(x)​
1+sec2(x)cos(x)−1⋅cos(x)−cos(x)cos(x)=1+sec2(x)cos(x)−cos(x)−cos2(x)
1+sec2(x)cos(x)−1⋅cos(x)−cos(x)cos(x)
1⋅cos(x)=cos(x)
1⋅cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=1+sec2(x)cos(x)−cos(x)−cos2(x)
=cos(x)1+sec2(x)cos(x)−cos(x)−cos2(x)​
cos(x)1+sec2(x)cos(x)−cos(x)−cos2(x)​=0
g(x)f(x)​=0⇒f(x)=01+sec2(x)cos(x)−cos(x)−cos2(x)=0
Rewrite using trig identities
1−cos(x)−cos2(x)+cos(x)sec2(x)
Use the basic trigonometric identity: cos(x)=sec(x)1​=1−sec(x)1​−(sec(x)1​)2+sec(x)1​sec2(x)
Simplify 1−sec(x)1​−(sec(x)1​)2+sec(x)1​sec2(x):1−sec(x)1​−sec2(x)1​+sec(x)
1−sec(x)1​−(sec(x)1​)2+sec(x)1​sec2(x)
(sec(x)1​)2=sec2(x)1​
(sec(x)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(x)12​
Apply rule 1a=112=1=sec2(x)1​
sec(x)1​sec2(x)=sec(x)
sec(x)1​sec2(x)
Multiply fractions: a⋅cb​=ca⋅b​=sec(x)1⋅sec2(x)​
Multiply: 1⋅sec2(x)=sec2(x)=sec(x)sec2(x)​
Cancel the common factor: sec(x)=sec(x)
=1−sec(x)1​−sec2(x)1​+sec(x)
=1−sec(x)1​−sec2(x)1​+sec(x)
1−sec2(x)1​−sec(x)1​+sec(x)=0
Solve by substitution
1−sec2(x)1​−sec(x)1​+sec(x)=0
Let: sec(x)=u1−u21​−u1​+u=0
1−u21​−u1​+u=0:u=−1,u=1
1−u21​−u1​+u=0
Multiply by LCM
1−u21​−u1​+u=0
Find Least Common Multiplier of u2,u:u2
u2,u
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u2 or u=u2
Multiply by LCM=u21⋅u2−u21​u2−u1​u2+uu2=0⋅u2
Simplify
1⋅u2−u21​u2−u1​u2+uu2=0⋅u2
Simplify 1⋅u2:u2
1⋅u2
Multiply: 1⋅u2=u2=u2
Simplify −u21​u2:−1
−u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=−u21⋅u2​
Cancel the common factor: u2=−1
Simplify −u1​u2:−u
−u1​u2
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u2​
Multiply: 1⋅u2=u2=−uu2​
Cancel the common factor: u=−u
Simplify uu2:u3
uu2
Apply exponent rule: ab⋅ac=ab+cuu2=u1+2=u1+2
Add the numbers: 1+2=3=u3
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
u2−1−u+u3=0
u2−1−u+u3=0
u2−1−u+u3=0
Solve u2−1−u+u3=0:u=−1,u=1
u2−1−u+u3=0
Write in the standard form an​xn+…+a1​x+a0​=0u3+u2−u−1=0
Factor u3+u2−u−1:(u+1)2(u−1)
u3+u2−u−1
=(u3+u2)+(−u−1)
Factor out −1from −u−1:−(u+1)
−u−1
Factor out common term −1=−(u+1)
Factor out u2from u3+u2:u2(u+1)
u3+u2
Apply exponent rule: ab+c=abacu3=uu2=uu2+u2
Factor out common term u2=u2(u+1)
=−(u+1)+u2(u+1)
Factor out common term u+1=(u+1)(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(u+1)(u+1)(u−1)
Refine=(u+1)2(u−1)
(u+1)2(u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0oru−1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
The solutions areu=−1,u=1
u=−1,u=1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 1−u21​−u1​+u and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−1,u=1
Substitute back u=sec(x)sec(x)=−1,sec(x)=1
sec(x)=−1,sec(x)=1
sec(x)=−1:x=π+2πn
sec(x)=−1
General solutions for sec(x)=−1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=π+2πn
x=π+2πn
sec(x)=1:x=2πn
sec(x)=1
General solutions for sec(x)=1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Combine all the solutionsx=π+2πn,x=2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=(sqrt(3))/3 ,180<= θ<= 3607.5=5sin(pi/2 (x-2))+52cos(θ)+2sqrt(3)=sqrt(3)-2sqrt(2)=-4sin(2θ)8cos(x)=4cos^2(x)+3

Frequently Asked Questions (FAQ)

  • What is the general solution for 1/(cos(x))+sec^2(x)-1-cos(x)=0 ?

    The general solution for 1/(cos(x))+sec^2(x)-1-cos(x)=0 is x=pi+2pin,x=2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024