Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(x)= pi/(12)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(x)=12π​

Solution

x=2−3​
Solution steps
arctan(x)=12π​
Apply trig inverse properties
arctan(x)=12π​
arctan(x)=a⇒x=tan(a)x=tan(12π​)
tan(12π​)=2−3​
tan(12π​)
Rewrite using trig identities:1+tan(4π​)tan(6π​)tan(4π​)−tan(6π​)​
tan(12π​)
Write tan(12π​)as tan(4π​−6π​)=tan(4π​−6π​)
Use the Angle Difference identity: tan(s−t)=1+tan(s)tan(t)tan(s)−tan(t)​=1+tan(4π​)tan(6π​)tan(4π​)−tan(6π​)​
=1+tan(4π​)tan(6π​)tan(4π​)−tan(6π​)​
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
Use the following trivial identity:tan(6π​)=33​​
tan(6π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=33​​
=1+1⋅33​​1−33​​​
Simplify 1+1⋅33​​1−33​​​:2−3​
1+1⋅33​​1−33​​​
Multiply: 1⋅33​​=33​​=1+33​​1−33​​​
Join 1+33​​:3​3​+1​
1+33​​
Convert element to fraction: 1=31⋅3​=31⋅3​+33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3+3​​
Multiply the numbers: 1⋅3=3=33+3​​
Factor 3+3​:3​(3​+1)
3+3​
3=3​3​=3​3​+3​
Factor out common term 3​=3​(3​+1)
=33​(3​+1)​
Cancel 33​(3​+1)​:3​3​+1​
33​(3​+1)​
Apply radical rule: na​=an1​3​=321​=3321​(1+3​)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​+1​
Subtract the numbers: 1−21​=21​=321​3​+1​
Apply radical rule: an1​=na​321​=3​=3​3​+1​
=3​3​+1​
=3​3​+1​1−33​​​
Join 1−33​​:3​3​−1​
1−33​​
Convert element to fraction: 1=31⋅3​=31⋅3​−33​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3−3​​
Multiply the numbers: 1⋅3=3=33−3​​
Factor 3−3​:3​(3​−1)
3−3​
3=3​3​=3​3​−3​
Factor out common term 3​=3​(3​−1)
=33​(3​−1)​
Cancel 33​(3​−1)​:3​3​−1​
33​(3​−1)​
Apply radical rule: na​=an1​3​=321​=3321​(3​−1)​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​3​−1​
Subtract the numbers: 1−21​=21​=321​3​−1​
Apply radical rule: an1​=na​321​=3​=3​3​−1​
=3​3​−1​
=3​3​+1​3​3​−1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=3​(3​+1)(3​−1)3​​
Cancel the common factor: 3​=3​+13​−1​
Rationalize 3​+13​−1​:2−3​
3​+13​−1​
Multiply by the conjugate 3​−13​−1​=(3​+1)(3​−1)(3​−1)(3​−1)​
(3​−1)(3​−1)=4−23​
(3​−1)(3​−1)
Apply exponent rule: ab⋅ac=ab+c(3​−1)(3​−1)=(3​−1)1+1=(3​−1)1+1
Add the numbers: 1+1=2=(3​−1)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=3​,b=1
=(3​)2−23​⋅1+12
Simplify (3​)2−23​⋅1+12:4−23​
(3​)2−23​⋅1+12
Apply rule 1a=112=1=(3​)2−2⋅1⋅3​+1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
23​⋅1=23​
23​⋅1
Multiply the numbers: 2⋅1=2=23​
=3−23​+1
Add the numbers: 3+1=4=4−23​
=4−23​
(3​+1)(3​−1)=2
(3​+1)(3​−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=3​,b=1=(3​)2−12
Simplify (3​)2−12:2
(3​)2−12
Apply rule 1a=112=1=(3​)2−1
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=3−1
Subtract the numbers: 3−1=2=2
=2
=24−23​​
Factor 4−23​:2(2−3​)
4−23​
Rewrite as=2⋅2−23​
Factor out common term 2=2(2−3​)
=22(2−3​)​
Divide the numbers: 22​=1=2−3​
=2−3​
=2−3​
x=2−3​
x=2−3​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

8sin^2(w)+10sin(w)+3=02-2cos^2(x)=2sin^2(x/2)cos(2x+30)= 1/2 ,0<= x<= 360tan(θ)= 43/902sin(2x+pi/3)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(x)= pi/(12) ?

    The general solution for arctan(x)= pi/(12) is x=2-sqrt(3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024