Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2x)=-3cos(x)-2,0<x<= 2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2x)=−3cos(x)−2,0<x≤2π

Solution

x=32π​,x=34π​,x=π
+1
Degrees
x=120∘,x=240∘,x=180∘
Solution steps
cos(2x)=−3cos(x)−2,0<x≤2π
Subtract −3cos(x)−2 from both sidescos(2x)+3cos(x)+2=0
Rewrite using trig identities
2+cos(2x)+3cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=2+2cos2(x)−1+3cos(x)
Simplify 2+2cos2(x)−1+3cos(x):2cos2(x)+3cos(x)+1
2+2cos2(x)−1+3cos(x)
Group like terms=2cos2(x)+3cos(x)+2−1
Add/Subtract the numbers: 2−1=1=2cos2(x)+3cos(x)+1
=2cos2(x)+3cos(x)+1
1+2cos2(x)+3cos(x)=0
Solve by substitution
1+2cos2(x)+3cos(x)=0
Let: cos(x)=u1+2u2+3u=0
1+2u2+3u=0:u=−21​,u=−1
1+2u2+3u=0
Write in the standard form ax2+bx+c=02u2+3u+1=0
Solve with the quadratic formula
2u2+3u+1=0
Quadratic Equation Formula:
For a=2,b=3,c=1u1,2​=2⋅2−3±32−4⋅2⋅1​​
u1,2​=2⋅2−3±32−4⋅2⋅1​​
32−4⋅2⋅1​=1
32−4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
u1,2​=2⋅2−3±1​
Separate the solutionsu1​=2⋅2−3+1​,u2​=2⋅2−3−1​
u=2⋅2−3+1​:−21​
2⋅2−3+1​
Add/Subtract the numbers: −3+1=−2=2⋅2−2​
Multiply the numbers: 2⋅2=4=4−2​
Apply the fraction rule: b−a​=−ba​=−42​
Cancel the common factor: 2=−21​
u=2⋅2−3−1​:−1
2⋅2−3−1​
Subtract the numbers: −3−1=−4=2⋅2−4​
Multiply the numbers: 2⋅2=4=4−4​
Apply the fraction rule: b−a​=−ba​=−44​
Apply rule aa​=1=−1
The solutions to the quadratic equation are:u=−21​,u=−1
Substitute back u=cos(x)cos(x)=−21​,cos(x)=−1
cos(x)=−21​,cos(x)=−1
cos(x)=−21​,0<x≤2π:x=32π​,x=34π​
cos(x)=−21​,0<x≤2π
General solutions for cos(x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=32π​+2πn,x=34π​+2πn
x=32π​+2πn,x=34π​+2πn
Solutions for the range 0<x≤2πx=32π​,x=34π​
cos(x)=−1,0<x≤2π:x=π
cos(x)=−1,0<x≤2π
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Solutions for the range 0<x≤2πx=π
Combine all the solutionsx=32π​,x=34π​,x=π

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=0.6tan(θ)=0.9cos(W)=(170^2+173^2-125^2)/(2(170)(173))2csc^2(x)+csc(x)-1=0tan(x)=0.15

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(2x)=-3cos(x)-2,0<x<= 2pi ?

    The general solution for cos(2x)=-3cos(x)-2,0<x<= 2pi is x=(2pi)/3 ,x=(4pi)/3 ,x=pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024