Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(sec(2x)-1)-1/(sec(2x)+1)=6

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(2x)−11​−sec(2x)+11​=6

Solution

x=12π​+πn,x=1211π​+πn,x=125π​+πn,x=127π​+πn
+1
Degrees
x=15∘+180∘n,x=165∘+180∘n,x=75∘+180∘n,x=105∘+180∘n
Solution steps
sec(2x)−11​−sec(2x)+11​=6
Solve by substitution
sec(2x)−11​−sec(2x)+11​=6
Let: sec(2x)=uu−11​−u+11​=6
u−11​−u+11​=6:u=323​​,u=−323​​
u−11​−u+11​=6
Multiply by LCM
u−11​−u+11​=6
Find Least Common Multiplier of u−1,u+1:(u−1)(u+1)
u−1,u+1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u−1 or u+1=(u−1)(u+1)
Multiply by LCM=(u−1)(u+1)u−11​(u−1)(u+1)−u+11​(u−1)(u+1)=6(u−1)(u+1)
Simplify
u−11​(u−1)(u+1)−u+11​(u−1)(u+1)=6(u−1)(u+1)
Simplify u−11​(u−1)(u+1):u+1
u−11​(u−1)(u+1)
Multiply fractions: a⋅cb​=ca⋅b​=u−11⋅(u−1)(u+1)​
Cancel the common factor: u−1=1⋅(u+1)
Refine=u+1
Simplify −u+11​(u−1)(u+1):−(u−1)
−u+11​(u−1)(u+1)
Multiply fractions: a⋅cb​=ca⋅b​=−u+11⋅(u−1)(u+1)​
Cancel the common factor: u+1=−1⋅(u−1)
Multiply: 1⋅(u−1)=(u−1)=−(u−1)
u+1−(u−1)=6(u−1)(u+1)
u+1−(u−1)=6(u−1)(u+1)
u+1−(u−1)=6(u−1)(u+1)
Solve u+1−(u−1)=6(u−1)(u+1):u=323​​,u=−323​​
u+1−(u−1)=6(u−1)(u+1)
Expand u+1−(u−1):2
u+1−(u−1)
−(u−1):−u+1
−(u−1)
Distribute parentheses=−(u)−(−1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−u+1
=u+1−u+1
Simplify u+1−u+1:2
u+1−u+1
Group like terms=u−u+1+1
Add similar elements: u−u=0=1+1
Add the numbers: 1+1=2=2
=2
Expand 6(u−1)(u+1):6u2−6
6(u−1)(u+1)
Expand (u−1)(u+1):u2−1
(u−1)(u+1)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=u,b=1=u2−12
Apply rule 1a=112=1=u2−1
=6(u2−1)
Expand 6(u2−1):6u2−6
6(u2−1)
Apply the distributive law: a(b−c)=ab−aca=6,b=u2,c=1=6u2−6⋅1
Multiply the numbers: 6⋅1=6=6u2−6
=6u2−6
2=6u2−6
Switch sides6u2−6=2
Move 6to the right side
6u2−6=2
Add 6 to both sides6u2−6+6=2+6
Simplify6u2=8
6u2=8
Divide both sides by 6
6u2=8
Divide both sides by 666u2​=68​
Simplifyu2=34​
u2=34​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=34​​,u=−34​​
34​​=323​​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
Rationalize 3​2​:323​​
3​2​
Multiply by the conjugate 3​3​​=3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=323​​
=323​​
−34​​=−323​​
−34​​
Simplify 34​​:3​2​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
u=323​​,u=−323​​
u=323​​,u=−323​​
Verify Solutions
Find undefined (singularity) points:u=1,u=−1
Take the denominator(s) of u−11​−u+11​ and compare to zero
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
The following points are undefinedu=1,u=−1
Combine undefined points with solutions:
u=323​​,u=−323​​
Substitute back u=sec(2x)sec(2x)=323​​,sec(2x)=−323​​
sec(2x)=323​​,sec(2x)=−323​​
sec(2x)=323​​:x=12π​+πn,x=1211π​+πn
sec(2x)=323​​
General solutions for sec(2x)=323​​
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
2x=6π​+2πn,2x=611π​+2πn
2x=6π​+2πn,2x=611π​+2πn
Solve 2x=6π​+2πn:x=12π​+πn
2x=6π​+2πn
Divide both sides by 2
2x=6π​+2πn
Divide both sides by 222x​=26π​​+22πn​
Simplify
22x​=26π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 26π​​+22πn​:12π​+πn
26π​​+22πn​
26π​​=12π​
26π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2π​
Multiply the numbers: 6⋅2=12=12π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=12π​+πn
x=12π​+πn
x=12π​+πn
x=12π​+πn
Solve 2x=611π​+2πn:x=1211π​+πn
2x=611π​+2πn
Divide both sides by 2
2x=611π​+2πn
Divide both sides by 222x​=2611π​​+22πn​
Simplify
22x​=2611π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2611π​​+22πn​:1211π​+πn
2611π​​+22πn​
2611π​​=1211π​
2611π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅211π​
Multiply the numbers: 6⋅2=12=1211π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=1211π​+πn
x=1211π​+πn
x=1211π​+πn
x=1211π​+πn
x=12π​+πn,x=1211π​+πn
sec(2x)=−323​​:x=125π​+πn,x=127π​+πn
sec(2x)=−323​​
General solutions for sec(2x)=−323​​
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
2x=65π​+2πn,2x=67π​+2πn
2x=65π​+2πn,2x=67π​+2πn
Solve 2x=65π​+2πn:x=125π​+πn
2x=65π​+2πn
Divide both sides by 2
2x=65π​+2πn
Divide both sides by 222x​=265π​​+22πn​
Simplify
22x​=265π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 265π​​+22πn​:125π​+πn
265π​​+22πn​
265π​​=125π​
265π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅25π​
Multiply the numbers: 6⋅2=12=125π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=125π​+πn
x=125π​+πn
x=125π​+πn
x=125π​+πn
Solve 2x=67π​+2πn:x=127π​+πn
2x=67π​+2πn
Divide both sides by 2
2x=67π​+2πn
Divide both sides by 222x​=267π​​+22πn​
Simplify
22x​=267π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 267π​​+22πn​:127π​+πn
267π​​+22πn​
267π​​=127π​
267π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅27π​
Multiply the numbers: 6⋅2=12=127π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=127π​+πn
x=127π​+πn
x=127π​+πn
x=127π​+πn
x=125π​+πn,x=127π​+πn
Combine all the solutionsx=12π​+πn,x=1211π​+πn,x=125π​+πn,x=127π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2pi+x)-sin(2pi-x)=-1solvefor θ,ma=Tsin(θ)-mgsin(x)= 16/203cos(x)=2sin(x)1=tan(0+c)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024