Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1=sech(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1=sech(x)

Solution

x=0
+1
Degrees
x=0∘
Solution steps
1=sech(x)
Switch sidessech(x)=1
Rewrite using trig identities
sech(x)=1
Use the Hyperbolic identity: sech(x)=ex+e−x2​ex+e−x2​=1
ex+e−x2​=1
ex+e−x2​=1:x=0
ex+e−x2​=1
Multiply both sides by ex+e−xex+e−x2​(ex+e−x)=1⋅(ex+e−x)
Simplify2=ex+e−x
Apply exponent rules
2=ex+e−x
Apply exponent rule: abc=(ab)ce−x=(ex)−12=ex+(ex)−1
2=ex+(ex)−1
Rewrite the equation with ex=u2=u+(u)−1
Solve 2=u+u−1:u=1
2=u+u−1
Refine2=u+u1​
Multiply both sides by u
2=u+u1​
Multiply both sides by u2u=uu+u1​u
Simplify
2u=uu+u1​u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify u1​u:1
u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
2u=u2+1
2u=u2+1
2u=u2+1
Solve 2u=u2+1:u=1
2u=u2+1
Switch sidesu2+1=2u
Move 2uto the left side
u2+1=2u
Subtract 2u from both sidesu2+1−2u=2u−2u
Simplifyu2+1−2u=0
u2+1−2u=0
Write in the standard form ax2+bx+c=0u2−2u+1=0
Solve with the quadratic formula
u2−2u+1=0
Quadratic Equation Formula:
For a=1,b=−2,c=1u1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅1​​
u1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅1​​
(−2)2−4⋅1⋅1=0
(−2)2−4⋅1⋅1
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=22−4
22=4=4−4
Subtract the numbers: 4−4=0=0
u1,2​=2⋅1−(−2)±0​​
u=2⋅1−(−2)​
2⋅1−(−2)​=1
2⋅1−(−2)​
Apply rule −(−a)=a=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
u=1
The solution to the quadratic equation is:u=1
u=1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u+u−1 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1
u=1
Substitute back u=ex,solve for x
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
x=0
Verify Solutions:x=0True
Check the solutions by plugging them into ex+e−x2​=1
Remove the ones that don't agree with the equation.
Plug in x=0:True
e0+e−02​=1
e0+e−02​=1
e0+e−02​
Apply rule a0=1,a=0e0=1,e−0=1=1+12​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
1=1
True
The solution isx=0
x=0

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=0.62sin(x)=0.59sin(x)=0.74sin(x)=0.72sin(x)=0.28

Frequently Asked Questions (FAQ)

  • What is the general solution for 1=sech(x) ?

    The general solution for 1=sech(x) is x=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024