Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

12=3sec(θ)+5csc(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

12=3sec(θ)+5csc(θ)

Solution

θ=π−0.33570…+2πn,θ=1.07609…+2πn,θ=0.65383…+2πn,θ=−1.39422…+2πn
+1
Degrees
θ=160.76534…∘+360∘n,θ=61.65590…∘+360∘n,θ=37.46199…∘+360∘n,θ=−79.88324…∘+360∘n
Solution steps
12=3sec(θ)+5csc(θ)
Subtract 5csc(θ) from both sides3sec(θ)=12−5csc(θ)
Square both sides(3sec(θ))2=(12−5csc(θ))2
Subtract (12−5csc(θ))2 from both sides9sec2(θ)−144+120csc(θ)−25csc2(θ)=0
Express with sin, cos
−144+120csc(θ)−25csc2(θ)+9sec2(θ)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−144+120⋅sin(θ)1​−25(sin(θ)1​)2+9sec2(θ)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−144+120⋅sin(θ)1​−25(sin(θ)1​)2+9(cos(θ)1​)2
Simplify −144+120⋅sin(θ)1​−25(sin(θ)1​)2+9(cos(θ)1​)2:cos2(θ)sin2(θ)−144cos2(θ)sin2(θ)+120cos2(θ)sin(θ)−25cos2(θ)+9sin2(θ)​
−144+120⋅sin(θ)1​−25(sin(θ)1​)2+9(cos(θ)1​)2
120⋅sin(θ)1​=sin(θ)120​
120⋅sin(θ)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(θ)1⋅120​
Multiply the numbers: 1⋅120=120=sin(θ)120​
25(sin(θ)1​)2=sin2(θ)25​
25(sin(θ)1​)2
(sin(θ)1​)2=sin2(θ)1​
(sin(θ)1​)2
Apply exponent rule: (ba​)c=bcac​=sin2(θ)12​
Apply rule 1a=112=1=sin2(θ)1​
=25⋅sin2(θ)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin2(θ)1⋅25​
Multiply the numbers: 1⋅25=25=sin2(θ)25​
9(cos(θ)1​)2=cos2(θ)9​
9(cos(θ)1​)2
(cos(θ)1​)2=cos2(θ)1​
(cos(θ)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(θ)12​
Apply rule 1a=112=1=cos2(θ)1​
=9⋅cos2(θ)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos2(θ)1⋅9​
Multiply the numbers: 1⋅9=9=cos2(θ)9​
=−144+sin(θ)120​−sin2(θ)25​+cos2(θ)9​
Convert element to fraction: 144=cos2(θ)144cos2(θ)​=−cos2(θ)144cos2(θ)​+sin(θ)120​−sin2(θ)25​+cos2(θ)9​
Least Common Multiplier of cos2(θ),sin(θ),sin2(θ),cos2(θ):cos2(θ)sin2(θ)
cos2(θ),sin(θ),sin2(θ),cos2(θ)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=cos2(θ)sin2(θ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos2(θ)sin2(θ)
For cos2(θ)144cos2(θ)​:multiply the denominator and numerator by sin2(θ)cos2(θ)144cos2(θ)​=cos2(θ)sin2(θ)144cos2(θ)sin2(θ)​
For sin(θ)120​:multiply the denominator and numerator by cos2(θ)sin(θ)sin(θ)120​=sin(θ)cos2(θ)sin(θ)120cos2(θ)sin(θ)​=cos2(θ)sin2(θ)120cos2(θ)sin(θ)​
For sin2(θ)25​:multiply the denominator and numerator by cos2(θ)sin2(θ)25​=sin2(θ)cos2(θ)25cos2(θ)​
For cos2(θ)9​:multiply the denominator and numerator by sin2(θ)cos2(θ)9​=cos2(θ)sin2(θ)9sin2(θ)​
=−cos2(θ)sin2(θ)144cos2(θ)sin2(θ)​+cos2(θ)sin2(θ)120cos2(θ)sin(θ)​−sin2(θ)cos2(θ)25cos2(θ)​+cos2(θ)sin2(θ)9sin2(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(θ)sin2(θ)−144cos2(θ)sin2(θ)+120cos2(θ)sin(θ)−25cos2(θ)+9sin2(θ)​
=cos2(θ)sin2(θ)−144cos2(θ)sin2(θ)+120cos2(θ)sin(θ)−25cos2(θ)+9sin2(θ)​
cos2(θ)sin2(θ)−25cos2(θ)+9sin2(θ)+120cos2(θ)sin(θ)−144cos2(θ)sin2(θ)​=0
g(x)f(x)​=0⇒f(x)=0−25cos2(θ)+9sin2(θ)+120cos2(θ)sin(θ)−144cos2(θ)sin2(θ)=0
Rewrite using trig identities
−25cos2(θ)+9sin2(θ)+120cos2(θ)sin(θ)−144cos2(θ)sin2(θ)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−25(1−sin2(θ))+9sin2(θ)+120(1−sin2(θ))sin(θ)−144(1−sin2(θ))sin2(θ)
Simplify −25(1−sin2(θ))+9sin2(θ)+120(1−sin2(θ))sin(θ)−144(1−sin2(θ))sin2(θ):−110sin2(θ)+120sin(θ)−120sin3(θ)+144sin4(θ)−25
−25(1−sin2(θ))+9sin2(θ)+120(1−sin2(θ))sin(θ)−144(1−sin2(θ))sin2(θ)
=−25(1−sin2(θ))+9sin2(θ)+120sin(θ)(1−sin2(θ))−144sin2(θ)(1−sin2(θ))
Expand −25(1−sin2(θ)):−25+25sin2(θ)
−25(1−sin2(θ))
Apply the distributive law: a(b−c)=ab−aca=−25,b=1,c=sin2(θ)=−25⋅1−(−25)sin2(θ)
Apply minus-plus rules−(−a)=a=−25⋅1+25sin2(θ)
Multiply the numbers: 25⋅1=25=−25+25sin2(θ)
=−25+25sin2(θ)+9sin2(θ)+120(1−sin2(θ))sin(θ)−144(1−sin2(θ))sin2(θ)
Expand 120sin(θ)(1−sin2(θ)):120sin(θ)−120sin3(θ)
120sin(θ)(1−sin2(θ))
Apply the distributive law: a(b−c)=ab−aca=120sin(θ),b=1,c=sin2(θ)=120sin(θ)⋅1−120sin(θ)sin2(θ)
=120⋅1⋅sin(θ)−120sin2(θ)sin(θ)
Simplify 120⋅1⋅sin(θ)−120sin2(θ)sin(θ):120sin(θ)−120sin3(θ)
120⋅1⋅sin(θ)−120sin2(θ)sin(θ)
120⋅1⋅sin(θ)=120sin(θ)
120⋅1⋅sin(θ)
Multiply the numbers: 120⋅1=120=120sin(θ)
120sin2(θ)sin(θ)=120sin3(θ)
120sin2(θ)sin(θ)
Apply exponent rule: ab⋅ac=ab+csin2(θ)sin(θ)=sin2+1(θ)=120sin2+1(θ)
Add the numbers: 2+1=3=120sin3(θ)
=120sin(θ)−120sin3(θ)
=120sin(θ)−120sin3(θ)
=−25+25sin2(θ)+9sin2(θ)+120sin(θ)−120sin3(θ)−144(1−sin2(θ))sin2(θ)
Expand −144sin2(θ)(1−sin2(θ)):−144sin2(θ)+144sin4(θ)
−144sin2(θ)(1−sin2(θ))
Apply the distributive law: a(b−c)=ab−aca=−144sin2(θ),b=1,c=sin2(θ)=−144sin2(θ)⋅1−(−144sin2(θ))sin2(θ)
Apply minus-plus rules−(−a)=a=−144⋅1⋅sin2(θ)+144sin2(θ)sin2(θ)
Simplify −144⋅1⋅sin2(θ)+144sin2(θ)sin2(θ):−144sin2(θ)+144sin4(θ)
−144⋅1⋅sin2(θ)+144sin2(θ)sin2(θ)
144⋅1⋅sin2(θ)=144sin2(θ)
144⋅1⋅sin2(θ)
Multiply the numbers: 144⋅1=144=144sin2(θ)
144sin2(θ)sin2(θ)=144sin4(θ)
144sin2(θ)sin2(θ)
Apply exponent rule: ab⋅ac=ab+csin2(θ)sin2(θ)=sin2+2(θ)=144sin2+2(θ)
Add the numbers: 2+2=4=144sin4(θ)
=−144sin2(θ)+144sin4(θ)
=−144sin2(θ)+144sin4(θ)
=−25+25sin2(θ)+9sin2(θ)+120sin(θ)−120sin3(θ)−144sin2(θ)+144sin4(θ)
Simplify −25+25sin2(θ)+9sin2(θ)+120sin(θ)−120sin3(θ)−144sin2(θ)+144sin4(θ):−110sin2(θ)+120sin(θ)−120sin3(θ)+144sin4(θ)−25
−25+25sin2(θ)+9sin2(θ)+120sin(θ)−120sin3(θ)−144sin2(θ)+144sin4(θ)
Group like terms=25sin2(θ)+9sin2(θ)+120sin(θ)−120sin3(θ)−144sin2(θ)+144sin4(θ)−25
Add similar elements: 25sin2(θ)+9sin2(θ)−144sin2(θ)=−110sin2(θ)=−110sin2(θ)+120sin(θ)−120sin3(θ)+144sin4(θ)−25
=−110sin2(θ)+120sin(θ)−120sin3(θ)+144sin4(θ)−25
=−110sin2(θ)+120sin(θ)−120sin3(θ)+144sin4(θ)−25
−25−110sin2(θ)+120sin(θ)−120sin3(θ)+144sin4(θ)=0
Solve by substitution
−25−110sin2(θ)+120sin(θ)−120sin3(θ)+144sin4(θ)=0
Let: sin(θ)=u−25−110u2+120u−120u3+144u4=0
−25−110u2+120u−120u3+144u4=0:u≈0.32943…,u≈0.88011…,u≈0.60823…,u≈−0.98445…
−25−110u2+120u−120u3+144u4=0
Write in the standard form an​xn+…+a1​x+a0​=0144u4−120u3−110u2+120u−25=0
Find one solution for 144u4−120u3−110u2+120u−25=0 using Newton-Raphson:u≈0.32943…
144u4−120u3−110u2+120u−25=0
Newton-Raphson Approximation Definition
f(u)=144u4−120u3−110u2+120u−25
Find f′(u):576u3−360u2−220u+120
dud​(144u4−120u3−110u2+120u−25)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(144u4)−dud​(120u3)−dud​(110u2)+dud​(120u)−dud​(25)
dud​(144u4)=576u3
dud​(144u4)
Take the constant out: (a⋅f)′=a⋅f′=144dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=144⋅4u4−1
Simplify=576u3
dud​(120u3)=360u2
dud​(120u3)
Take the constant out: (a⋅f)′=a⋅f′=120dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=120⋅3u3−1
Simplify=360u2
dud​(110u2)=220u
dud​(110u2)
Take the constant out: (a⋅f)′=a⋅f′=110dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=110⋅2u2−1
Simplify=220u
dud​(120u)=120
dud​(120u)
Take the constant out: (a⋅f)′=a⋅f′=120dudu​
Apply the common derivative: dudu​=1=120⋅1
Simplify=120
dud​(25)=0
dud​(25)
Derivative of a constant: dxd​(a)=0=0
=576u3−360u2−220u+120−0
Simplify=576u3−360u2−220u+120
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.20833…:Δu1​=0.20833…
f(u0​)=144⋅04−120⋅03−110⋅02+120⋅0−25=−25f′(u0​)=576⋅03−360⋅02−220⋅0+120=120u1​=0.20833…
Δu1​=∣0.20833…−0∣=0.20833…Δu1​=0.20833…
u2​=0.29598…:Δu2​=0.08765…
f(u1​)=144⋅0.20833…4−120⋅0.20833…3−110⋅0.20833…2+120⋅0.20833…−25=−5.58810…f′(u1​)=576⋅0.20833…3−360⋅0.20833…2−220⋅0.20833…+120=63.75u2​=0.29598…
Δu2​=∣0.29598…−0.20833…∣=0.08765…Δu2​=0.08765…
u3​=0.32537…:Δu3​=0.02938…
f(u2​)=144⋅0.29598…4−120⋅0.29598…3−110⋅0.29598…2+120⋅0.29598…−25=−1.12484…f′(u2​)=576⋅0.29598…3−360⋅0.29598…2−220⋅0.29598…+120=38.27925…u3​=0.32537…
Δu3​=∣0.32537…−0.29598…∣=0.02938…Δu3​=0.02938…
u4​=0.32936…:Δu4​=0.00398…
f(u3​)=144⋅0.32537…4−120⋅0.32537…3−110⋅0.32537…2+120⋅0.32537…−25=−0.12024…f′(u3​)=576⋅0.32537…3−360⋅0.32537…2−220⋅0.32537…+120=30.14620…u4​=0.32936…
Δu4​=∣0.32936…−0.32537…∣=0.00398…Δu4​=0.00398…
u5​=0.32943…:Δu5​=0.00007…
f(u4​)=144⋅0.32936…4−120⋅0.32936…3−110⋅0.32936…2+120⋅0.32936…−25=−0.00215…f′(u4​)=576⋅0.32936…3−360⋅0.32936…2−220⋅0.32936…+120=29.06722…u5​=0.32943…
Δu5​=∣0.32943…−0.32936…∣=0.00007…Δu5​=0.00007…
u6​=0.32943…:Δu6​=2.54922E−8
f(u5​)=144⋅0.32943…4−120⋅0.32943…3−110⋅0.32943…2+120⋅0.32943…−25=−7.40478E−7f′(u5​)=576⋅0.32943…3−360⋅0.32943…2−220⋅0.32943…+120=29.04723…u6​=0.32943…
Δu6​=∣0.32943…−0.32943…∣=2.54922E−8Δu6​=2.54922E−8
u≈0.32943…
Apply long division:u−0.32943…144u4−120u3−110u2+120u−25​=144u3−72.56094…u2−133.90432…u+75.88684…
144u3−72.56094…u2−133.90432…u+75.88684…≈0
Find one solution for 144u3−72.56094…u2−133.90432…u+75.88684…=0 using Newton-Raphson:u≈0.88011…
144u3−72.56094…u2−133.90432…u+75.88684…=0
Newton-Raphson Approximation Definition
f(u)=144u3−72.56094…u2−133.90432…u+75.88684…
Find f′(u):432u2−145.12189…u−133.90432…
dud​(144u3−72.56094…u2−133.90432…u+75.88684…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(144u3)−dud​(72.56094…u2)−dud​(133.90432…u)+dud​(75.88684…)
dud​(144u3)=432u2
dud​(144u3)
Take the constant out: (a⋅f)′=a⋅f′=144dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=144⋅3u3−1
Simplify=432u2
dud​(72.56094…u2)=145.12189…u
dud​(72.56094…u2)
Take the constant out: (a⋅f)′=a⋅f′=72.56094…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=72.56094…⋅2u2−1
Simplify=145.12189…u
dud​(133.90432…u)=133.90432…
dud​(133.90432…u)
Take the constant out: (a⋅f)′=a⋅f′=133.90432…dudu​
Apply the common derivative: dudu​=1=133.90432…⋅1
Simplify=133.90432…
dud​(75.88684…)=0
dud​(75.88684…)
Derivative of a constant: dxd​(a)=0=0
=432u2−145.12189…u−133.90432…+0
Simplify=432u2−145.12189…u−133.90432…
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.91226…:Δu1​=0.08773…
f(u0​)=144⋅13−72.56094…⋅12−133.90432…⋅1+75.88684…=13.42157…f′(u0​)=432⋅12−145.12189…⋅1−133.90432…=152.97377…u1​=0.91226…
Δu1​=∣0.91226…−1∣=0.08773…Δu1​=0.08773…
u2​=0.88362…:Δu2​=0.02863…
f(u1​)=144⋅0.91226…3−72.56094…⋅0.91226…2−133.90432…⋅0.91226…+75.88684…=2.66967…f′(u1​)=432⋅0.91226…2−145.12189…⋅0.91226…−133.90432…=93.22653…u2​=0.88362…
Δu2​=∣0.88362…−0.91226…∣=0.02863…Δu2​=0.02863…
u3​=0.88016…:Δu3​=0.00346…
f(u2​)=144⋅0.88362…3−72.56094…⋅0.88362…2−133.90432…⋅0.88362…+75.88684…=0.26029…f′(u2​)=432⋅0.88362…2−145.12189…⋅0.88362…−133.90432…=75.16549…u3​=0.88016…
Δu3​=∣0.88016…−0.88362…∣=0.00346…Δu3​=0.00346…
u4​=0.88011…:Δu4​=0.00005…
f(u3​)=144⋅0.88016…3−72.56094…⋅0.88016…2−133.90432…⋅0.88016…+75.88684…=0.00370…f′(u3​)=432⋅0.88016…2−145.12189…⋅0.88016…−133.90432…=73.02944…u4​=0.88011…
Δu4​=∣0.88011…−0.88016…∣=0.00005…Δu4​=0.00005…
u5​=0.88011…:Δu5​=1.08272E−8
f(u4​)=144⋅0.88011…3−72.56094…⋅0.88011…2−133.90432…⋅0.88011…+75.88684…=7.90368E−7f′(u4​)=432⋅0.88011…2−145.12189…⋅0.88011…−133.90432…=72.99825…u5​=0.88011…
Δu5​=∣0.88011…−0.88011…∣=1.08272E−8Δu5​=1.08272E−8
u≈0.88011…
Apply long division:u−0.88011…144u3−72.56094…u2−133.90432…u+75.88684…​=144u2+54.17521…u−86.22405…
144u2+54.17521…u−86.22405…≈0
Find one solution for 144u2+54.17521…u−86.22405…=0 using Newton-Raphson:u≈0.60823…
144u2+54.17521…u−86.22405…=0
Newton-Raphson Approximation Definition
f(u)=144u2+54.17521…u−86.22405…
Find f′(u):288u+54.17521…
dud​(144u2+54.17521…u−86.22405…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(144u2)+dud​(54.17521…u)−dud​(86.22405…)
dud​(144u2)=288u
dud​(144u2)
Take the constant out: (a⋅f)′=a⋅f′=144dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=144⋅2u2−1
Simplify=288u
dud​(54.17521…u)=54.17521…
dud​(54.17521…u)
Take the constant out: (a⋅f)′=a⋅f′=54.17521…dudu​
Apply the common derivative: dudu​=1=54.17521…⋅1
Simplify=54.17521…
dud​(86.22405…)=0
dud​(86.22405…)
Derivative of a constant: dxd​(a)=0=0
=288u+54.17521…−0
Simplify=288u+54.17521…
Let u0​=2Compute un+1​ until Δun+1​<0.000001
u1​=1.05085…:Δu1​=0.94914…
f(u0​)=144⋅22+54.17521…⋅2−86.22405…=598.12636…f′(u0​)=288⋅2+54.17521…=630.17521…u1​=1.05085…
Δu1​=∣1.05085…−2∣=0.94914…Δu1​=0.94914…
u2​=0.68729…:Δu2​=0.36355…
f(u1​)=144⋅1.05085…2+54.17521…⋅1.05085…−86.22405…=129.72561…f′(u1​)=288⋅1.05085…+54.17521…=356.82203…u2​=0.68729…
Δu2​=∣0.68729…−1.05085…∣=0.36355…Δu2​=0.36355…
u3​=0.61180…:Δu3​=0.07549…
f(u2​)=144⋅0.68729…2+54.17521…⋅0.68729…−86.22405…=19.03314…f′(u2​)=288⋅0.68729…+54.17521…=252.11724…u3​=0.61180…
Δu3​=∣0.61180…−0.68729…∣=0.07549…Δu3​=0.07549…
u4​=0.60824…:Δu4​=0.00356…
f(u3​)=144⋅0.61180…2+54.17521…⋅0.61180…−86.22405…=0.82068…f′(u3​)=288⋅0.61180…+54.17521…=230.37518…u4​=0.60824…
Δu4​=∣0.60824…−0.61180…∣=0.00356…Δu4​=0.00356…
u5​=0.60823…:Δu5​=7.96803E−6
f(u4​)=144⋅0.60824…2+54.17521…⋅0.60824…−86.22405…=0.00182…f′(u4​)=288⋅0.60824…+54.17521…=229.34921…u5​=0.60823…
Δu5​=∣0.60823…−0.60824…∣=7.96803E−6Δu5​=7.96803E−6
u6​=0.60823…:Δu6​=3.98632E−11
f(u5​)=144⋅0.60823…2+54.17521…⋅0.60823…−86.22405…=9.1425E−9f′(u5​)=288⋅0.60823…+54.17521…=229.34692…u6​=0.60823…
Δu6​=∣0.60823…−0.60823…∣=3.98632E−11Δu6​=3.98632E−11
u≈0.60823…
Apply long division:u−0.60823…144u2+54.17521…u−86.22405…​=144u+141.76106…
144u+141.76106…≈0
u≈−0.98445…
The solutions areu≈0.32943…,u≈0.88011…,u≈0.60823…,u≈−0.98445…
Substitute back u=sin(θ)sin(θ)≈0.32943…,sin(θ)≈0.88011…,sin(θ)≈0.60823…,sin(θ)≈−0.98445…
sin(θ)≈0.32943…,sin(θ)≈0.88011…,sin(θ)≈0.60823…,sin(θ)≈−0.98445…
sin(θ)=0.32943…:θ=arcsin(0.32943…)+2πn,θ=π−arcsin(0.32943…)+2πn
sin(θ)=0.32943…
Apply trig inverse properties
sin(θ)=0.32943…
General solutions for sin(θ)=0.32943…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ=arcsin(0.32943…)+2πn,θ=π−arcsin(0.32943…)+2πn
θ=arcsin(0.32943…)+2πn,θ=π−arcsin(0.32943…)+2πn
sin(θ)=0.88011…:θ=arcsin(0.88011…)+2πn,θ=π−arcsin(0.88011…)+2πn
sin(θ)=0.88011…
Apply trig inverse properties
sin(θ)=0.88011…
General solutions for sin(θ)=0.88011…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ=arcsin(0.88011…)+2πn,θ=π−arcsin(0.88011…)+2πn
θ=arcsin(0.88011…)+2πn,θ=π−arcsin(0.88011…)+2πn
sin(θ)=0.60823…:θ=arcsin(0.60823…)+2πn,θ=π−arcsin(0.60823…)+2πn
sin(θ)=0.60823…
Apply trig inverse properties
sin(θ)=0.60823…
General solutions for sin(θ)=0.60823…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ=arcsin(0.60823…)+2πn,θ=π−arcsin(0.60823…)+2πn
θ=arcsin(0.60823…)+2πn,θ=π−arcsin(0.60823…)+2πn
sin(θ)=−0.98445…:θ=arcsin(−0.98445…)+2πn,θ=π+arcsin(0.98445…)+2πn
sin(θ)=−0.98445…
Apply trig inverse properties
sin(θ)=−0.98445…
General solutions for sin(θ)=−0.98445…sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnθ=arcsin(−0.98445…)+2πn,θ=π+arcsin(0.98445…)+2πn
θ=arcsin(−0.98445…)+2πn,θ=π+arcsin(0.98445…)+2πn
Combine all the solutionsθ=arcsin(0.32943…)+2πn,θ=π−arcsin(0.32943…)+2πn,θ=arcsin(0.88011…)+2πn,θ=π−arcsin(0.88011…)+2πn,θ=arcsin(0.60823…)+2πn,θ=π−arcsin(0.60823…)+2πn,θ=arcsin(−0.98445…)+2πn,θ=π+arcsin(0.98445…)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 3sec(θ)+5csc(θ)=12
Remove the ones that don't agree with the equation.
Check the solution arcsin(0.32943…)+2πn:False
arcsin(0.32943…)+2πn
Plug in n=1arcsin(0.32943…)+2π1
For 3sec(θ)+5csc(θ)=12plug inθ=arcsin(0.32943…)+2π13sec(arcsin(0.32943…)+2π1)+5csc(arcsin(0.32943…)+2π1)=12
Refine18.35473…=12
⇒False
Check the solution π−arcsin(0.32943…)+2πn:True
π−arcsin(0.32943…)+2πn
Plug in n=1π−arcsin(0.32943…)+2π1
For 3sec(θ)+5csc(θ)=12plug inθ=π−arcsin(0.32943…)+2π13sec(π−arcsin(0.32943…)+2π1)+5csc(π−arcsin(0.32943…)+2π1)=12
Refine12=12
⇒True
Check the solution arcsin(0.88011…)+2πn:True
arcsin(0.88011…)+2πn
Plug in n=1arcsin(0.88011…)+2π1
For 3sec(θ)+5csc(θ)=12plug inθ=arcsin(0.88011…)+2π13sec(arcsin(0.88011…)+2π1)+5csc(arcsin(0.88011…)+2π1)=12
Refine12=12
⇒True
Check the solution π−arcsin(0.88011…)+2πn:False
π−arcsin(0.88011…)+2πn
Plug in n=1π−arcsin(0.88011…)+2π1
For 3sec(θ)+5csc(θ)=12plug inθ=π−arcsin(0.88011…)+2π13sec(π−arcsin(0.88011…)+2π1)+5csc(π−arcsin(0.88011…)+2π1)=12
Refine−0.63781…=12
⇒False
Check the solution arcsin(0.60823…)+2πn:True
arcsin(0.60823…)+2πn
Plug in n=1arcsin(0.60823…)+2π1
For 3sec(θ)+5csc(θ)=12plug inθ=arcsin(0.60823…)+2π13sec(arcsin(0.60823…)+2π1)+5csc(arcsin(0.60823…)+2π1)=12
Refine12=12
⇒True
Check the solution π−arcsin(0.60823…)+2πn:False
π−arcsin(0.60823…)+2πn
Plug in n=1π−arcsin(0.60823…)+2π1
For 3sec(θ)+5csc(θ)=12plug inθ=π−arcsin(0.60823…)+2π13sec(π−arcsin(0.60823…)+2π1)+5csc(π−arcsin(0.60823…)+2π1)=12
Refine4.44101…=12
⇒False
Check the solution arcsin(−0.98445…)+2πn:True
arcsin(−0.98445…)+2πn
Plug in n=1arcsin(−0.98445…)+2π1
For 3sec(θ)+5csc(θ)=12plug inθ=arcsin(−0.98445…)+2π13sec(arcsin(−0.98445…)+2π1)+5csc(arcsin(−0.98445…)+2π1)=12
Refine12=12
⇒True
Check the solution π+arcsin(0.98445…)+2πn:False
π+arcsin(0.98445…)+2πn
Plug in n=1π+arcsin(0.98445…)+2π1
For 3sec(θ)+5csc(θ)=12plug inθ=π+arcsin(0.98445…)+2π13sec(π+arcsin(0.98445…)+2π1)+5csc(π+arcsin(0.98445…)+2π1)=12
Refine−22.15793…=12
⇒False
θ=π−arcsin(0.32943…)+2πn,θ=arcsin(0.88011…)+2πn,θ=arcsin(0.60823…)+2πn,θ=arcsin(−0.98445…)+2πn
Show solutions in decimal formθ=π−0.33570…+2πn,θ=1.07609…+2πn,θ=0.65383…+2πn,θ=−1.39422…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(9x+2)=cos(6x-7)2cos(3x+pi/2)=-1sin((3θ)/2)=04sin(pi/2 x)=3tan(2t)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024