Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(6x)+2sin(2x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(6x)+2sin(2x)=0

Solution

x=πn,x=2π+2πn​,x=43π+4πn​,x=4π+4πn​
+1
Degrees
x=0∘+180∘n,x=90∘+180∘n,x=135∘+180∘n,x=45∘+180∘n
Solution steps
2sin(6x)+2sin(2x)=0
Let: u=2x2sin(3u)+2sin(u)=0
Rewrite using trig identities
2sin(3u)+2sin(u)
sin(3u)=3sin(u)−4sin3(u)
sin(3u)
Rewrite using trig identities
sin(3u)
Rewrite as=sin(2u+u)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2u)cos(u)+cos(2u)sin(u)
Use the Double Angle identity: sin(2u)=2sin(u)cos(u)=cos(2u)sin(u)+cos(u)2sin(u)cos(u)
Simplify cos(2u)sin(u)+cos(u)⋅2sin(u)cos(u):sin(u)cos(2u)+2cos2(u)sin(u)
cos(2u)sin(u)+cos(u)2sin(u)cos(u)
cos(u)⋅2sin(u)cos(u)=2cos2(u)sin(u)
cos(u)2sin(u)cos(u)
Apply exponent rule: ab⋅ac=ab+ccos(u)cos(u)=cos1+1(u)=2sin(u)cos1+1(u)
Add the numbers: 1+1=2=2sin(u)cos2(u)
=sin(u)cos(2u)+2cos2(u)sin(u)
=sin(u)cos(2u)+2cos2(u)sin(u)
=sin(u)cos(2u)+2cos2(u)sin(u)
Use the Double Angle identity: cos(2u)=1−2sin2(u)=(1−2sin2(u))sin(u)+2cos2(u)sin(u)
Use the Pythagorean identity: cos2(u)+sin2(u)=1cos2(u)=1−sin2(u)=(1−2sin2(u))sin(u)+2(1−sin2(u))sin(u)
Expand (1−2sin2(u))sin(u)+2(1−sin2(u))sin(u):−4sin3(u)+3sin(u)
(1−2sin2(u))sin(u)+2(1−sin2(u))sin(u)
=sin(u)(1−2sin2(u))+2sin(u)(1−sin2(u))
Expand sin(u)(1−2sin2(u)):sin(u)−2sin3(u)
sin(u)(1−2sin2(u))
Apply the distributive law: a(b−c)=ab−aca=sin(u),b=1,c=2sin2(u)=sin(u)1−sin(u)2sin2(u)
=1sin(u)−2sin2(u)sin(u)
Simplify 1⋅sin(u)−2sin2(u)sin(u):sin(u)−2sin3(u)
1sin(u)−2sin2(u)sin(u)
1⋅sin(u)=sin(u)
1sin(u)
Multiply: 1⋅sin(u)=sin(u)=sin(u)
2sin2(u)sin(u)=2sin3(u)
2sin2(u)sin(u)
Apply exponent rule: ab⋅ac=ab+csin2(u)sin(u)=sin2+1(u)=2sin2+1(u)
Add the numbers: 2+1=3=2sin3(u)
=sin(u)−2sin3(u)
=sin(u)−2sin3(u)
=sin(u)−2sin3(u)+2(1−sin2(u))sin(u)
Expand 2sin(u)(1−sin2(u)):2sin(u)−2sin3(u)
2sin(u)(1−sin2(u))
Apply the distributive law: a(b−c)=ab−aca=2sin(u),b=1,c=sin2(u)=2sin(u)1−2sin(u)sin2(u)
=2⋅1sin(u)−2sin2(u)sin(u)
Simplify 2⋅1⋅sin(u)−2sin2(u)sin(u):2sin(u)−2sin3(u)
2⋅1sin(u)−2sin2(u)sin(u)
2⋅1⋅sin(u)=2sin(u)
2⋅1sin(u)
Multiply the numbers: 2⋅1=2=2sin(u)
2sin2(u)sin(u)=2sin3(u)
2sin2(u)sin(u)
Apply exponent rule: ab⋅ac=ab+csin2(u)sin(u)=sin2+1(u)=2sin2+1(u)
Add the numbers: 2+1=3=2sin3(u)
=2sin(u)−2sin3(u)
=2sin(u)−2sin3(u)
=sin(u)−2sin3(u)+2sin(u)−2sin3(u)
Simplify sin(u)−2sin3(u)+2sin(u)−2sin3(u):−4sin3(u)+3sin(u)
sin(u)−2sin3(u)+2sin(u)−2sin3(u)
Group like terms=−2sin3(u)−2sin3(u)+sin(u)+2sin(u)
Add similar elements: −2sin3(u)−2sin3(u)=−4sin3(u)=−4sin3(u)+sin(u)+2sin(u)
Add similar elements: sin(u)+2sin(u)=3sin(u)=−4sin3(u)+3sin(u)
=−4sin3(u)+3sin(u)
=−4sin3(u)+3sin(u)
=2(3sin(u)−4sin3(u))+2sin(u)
Simplify 2(3sin(u)−4sin3(u))+2sin(u):8sin(u)−8sin3(u)
2(3sin(u)−4sin3(u))+2sin(u)
Expand 2(3sin(u)−4sin3(u)):6sin(u)−8sin3(u)
2(3sin(u)−4sin3(u))
Apply the distributive law: a(b−c)=ab−aca=2,b=3sin(u),c=4sin3(u)=2⋅3sin(u)−2⋅4sin3(u)
Simplify 2⋅3sin(u)−2⋅4sin3(u):6sin(u)−8sin3(u)
2⋅3sin(u)−2⋅4sin3(u)
Multiply the numbers: 2⋅3=6=6sin(u)−2⋅4sin3(u)
Multiply the numbers: 2⋅4=8=6sin(u)−8sin3(u)
=6sin(u)−8sin3(u)
=6sin(u)−8sin3(u)+2sin(u)
Add similar elements: 6sin(u)+2sin(u)=8sin(u)=8sin(u)−8sin3(u)
=8sin(u)−8sin3(u)
8sin(u)−8sin3(u)=0
Solve by substitution
8sin(u)−8sin3(u)=0
Let: sin(u)=u8u−8u3=0
8u−8u3=0:u=0,u=−1,u=1
8u−8u3=0
Factor 8u−8u3:−8u(u+1)(u−1)
8u−8u3
Factor out common term −8u:−8u(u2−1)
−8u3+8u
Apply exponent rule: ab+c=abacu3=u2u=−8u2u+8u
Factor out common term −8u=−8u(u2−1)
=−8u(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=−8u(u+1)(u−1)
−8u(u+1)(u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0oru+1=0oru−1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
The solutions areu=0,u=−1,u=1
Substitute back u=sin(u)sin(u)=0,sin(u)=−1,sin(u)=1
sin(u)=0,sin(u)=−1,sin(u)=1
sin(u)=0:u=2πn,u=π+2πn
sin(u)=0
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
sin(u)=−1:u=23π​+2πn
sin(u)=−1
General solutions for sin(u)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=23π​+2πn
u=23π​+2πn
sin(u)=1:u=2π​+2πn
sin(u)=1
General solutions for sin(u)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=2π​+2πn
u=2π​+2πn
Combine all the solutionsu=2πn,u=π+2πn,u=23π​+2πn,u=2π​+2πn
Substitute back u=2x
2x=2πn:x=πn
2x=2πn
Divide both sides by 2
2x=2πn
Divide both sides by 222x​=22πn​
Simplifyx=πn
x=πn
2x=π+2πn:x=2π+2πn​
2x=π+2πn
Divide both sides by 2
2x=π+2πn
Divide both sides by 222x​=2π​+22πn​
Simplify
22x​=2π​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π​+22πn​:2π+2πn​
2π​+22πn​
Apply rule ca​±cb​=ca±b​=2π+2πn​
x=2π+2πn​
x=2π+2πn​
x=2π+2πn​
2x=23π​+2πn:x=43π+4πn​
2x=23π​+2πn
Divide both sides by 2
2x=23π​+2πn
Divide both sides by 222x​=223π​​+22πn​
Simplify
22x​=223π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 223π​​+22πn​:43π+4πn​
223π​​+22πn​
Apply rule ca​±cb​=ca±b​=223π​+2πn​
Join 23π​+2πn:23π+4πn​
23π​+2πn
Convert element to fraction: 2πn=22πn2​=23π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=23π+2πn⋅2​
Multiply the numbers: 2⋅2=4=23π+4πn​
=223π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π+4πn​
Multiply the numbers: 2⋅2=4=43π+4πn​
x=43π+4πn​
x=43π+4πn​
x=43π+4πn​
2x=2π​+2πn:x=4π+4πn​
2x=2π​+2πn
Divide both sides by 2
2x=2π​+2πn
Divide both sides by 222x​=22π​​+22πn​
Simplify
22x​=22π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​:4π+4πn​
22π​​+22πn​
Apply rule ca​±cb​=ca±b​=22π​+2πn​
Join 2π​+2πn:2π+4πn​
2π​+2πn
Convert element to fraction: 2πn=22πn2​=2π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π+2πn⋅2​
Multiply the numbers: 2⋅2=4=2π+4πn​
=22π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π+4πn​
Multiply the numbers: 2⋅2=4=4π+4πn​
x=4π+4πn​
x=4π+4πn​
x=4π+4πn​
x=πn,x=2π+2πn​,x=43π+4πn​,x=4π+4πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^2(2x)-1=sec(2x)-1.92=cos(x)5cot^2(x)+8cot(x)+3=0sin(x)= 15/314cot(θ)-1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(6x)+2sin(2x)=0 ?

    The general solution for 2sin(6x)+2sin(2x)=0 is x=pin,x=(pi+2pin)/2 ,x=(3pi+4pin)/4 ,x=(pi+4pin)/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024