Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(x)+sin^2(x)=cos^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)+sin2(x)=cos2(x)

Solution

x=−0.61547…+πn,x=0.61547…+πn
+1
Degrees
x=−35.26438…∘+180∘n,x=35.26438…∘+180∘n
Solution steps
sin2(x)+sin2(x)=cos2(x)
Subtract cos2(x) from both sides2sin2(x)−cos2(x)=0
Factor 2sin2(x)−cos2(x):(2​sin(x)+cos(x))(2​sin(x)−cos(x))
2sin2(x)−cos2(x)
Rewrite 2sin2(x)−cos2(x) as (2​sin(x))2−cos2(x)
2sin2(x)−cos2(x)
Apply radical rule: a=(a​)22=(2​)2=(2​)2sin2(x)−cos2(x)
Apply exponent rule: ambm=(ab)m(2​)2sin2(x)=(2​sin(x))2=(2​sin(x))2−cos2(x)
=(2​sin(x))2−cos2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​sin(x))2−cos2(x)=(2​sin(x)+cos(x))(2​sin(x)−cos(x))=(2​sin(x)+cos(x))(2​sin(x)−cos(x))
(2​sin(x)+cos(x))(2​sin(x)−cos(x))=0
Solving each part separately2​sin(x)+cos(x)=0or2​sin(x)−cos(x)=0
2​sin(x)+cos(x)=0:x=arctan(−22​​)+πn
2​sin(x)+cos(x)=0
Rewrite using trig identities
2​sin(x)+cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)2​sin(x)+cos(x)​=cos(x)0​
Simplifycos(x)2​sin(x)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2​tan(x)+1=0
2​tan(x)+1=0
Move 1to the right side
2​tan(x)+1=0
Subtract 1 from both sides2​tan(x)+1−1=0−1
Simplify2​tan(x)=−1
2​tan(x)=−1
Divide both sides by 2​
2​tan(x)=−1
Divide both sides by 2​2​2​tan(x)​=2​−1​
Simplify
2​2​tan(x)​=2​−1​
Simplify 2​2​tan(x)​:tan(x)
2​2​tan(x)​
Cancel the common factor: 2​=tan(x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
tan(x)=−22​​
tan(x)=−22​​
tan(x)=−22​​
Apply trig inverse properties
tan(x)=−22​​
General solutions for tan(x)=−22​​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−22​​)+πn
x=arctan(−22​​)+πn
2​sin(x)−cos(x)=0:x=arctan(22​​)+πn
2​sin(x)−cos(x)=0
Rewrite using trig identities
2​sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)2​sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)2​sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2​tan(x)−1=0
2​tan(x)−1=0
Move 1to the right side
2​tan(x)−1=0
Add 1 to both sides2​tan(x)−1+1=0+1
Simplify2​tan(x)=1
2​tan(x)=1
Divide both sides by 2​
2​tan(x)=1
Divide both sides by 2​2​2​tan(x)​=2​1​
Simplify
2​2​tan(x)​=2​1​
Simplify 2​2​tan(x)​:tan(x)
2​2​tan(x)​
Cancel the common factor: 2​=tan(x)
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
tan(x)=22​​
tan(x)=22​​
tan(x)=22​​
Apply trig inverse properties
tan(x)=22​​
General solutions for tan(x)=22​​tan(x)=a⇒x=arctan(a)+πnx=arctan(22​​)+πn
x=arctan(22​​)+πn
Combine all the solutionsx=arctan(−22​​)+πn,x=arctan(22​​)+πn
Show solutions in decimal formx=−0.61547…+πn,x=0.61547…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(2t)=0cos(x)= 6/14solvefor x,sec(x)=2cot(a)=-7/242sin^2(a)=-sin(a)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^2(x)+sin^2(x)=cos^2(x) ?

    The general solution for sin^2(x)+sin^2(x)=cos^2(x) is x=-0.61547…+pin,x=0.61547…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024