Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(x)= 5/12 ,cosh(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(x)=125​,cosh(x)

Solution

x=ln(23​)
+1
Degrees
x=23.23143…∘
Solution steps
sinh(x)=125​,cosh(x)
Rewrite using trig identities
sinh(x)=125​
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2ex−e−x​=125​
2ex−e−x​=125​
2ex−e−x​=125​:x=ln(23​)
2ex−e−x​=125​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(ex−e−x)⋅12=2⋅5
Simplify(ex−e−x)⋅12=10
Apply exponent rules
(ex−e−x)⋅12=10
Apply exponent rule: abc=(ab)ce−x=(ex)−1(ex−(ex)−1)⋅12=10
(ex−(ex)−1)⋅12=10
Rewrite the equation with ex=u(u−(u)−1)⋅12=10
Solve (u−u−1)⋅12=10:u=23​,u=−32​
(u−u−1)⋅12=10
Refine(u−u1​)⋅12=10
Simplify (u−u1​)⋅12:12(u−u1​)
(u−u1​)⋅12
Apply the commutative law: (u−u1​)⋅12=12(u−u1​)12(u−u1​)
12(u−u1​)=10
Expand 12(u−u1​):12u−u12​
12(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=12,b=u,c=u1​=12u−12⋅u1​
12⋅u1​=u12​
12⋅u1​
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅12​
Multiply the numbers: 1⋅12=12=u12​
=12u−u12​
12u−u12​=10
Multiply both sides by u
12u−u12​=10
Multiply both sides by u12uu−u12​u=10u
Simplify
12uu−u12​u=10u
Simplify 12uu:12u2
12uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=12u1+1
Add the numbers: 1+1=2=12u2
Simplify −u12​u:−12
−u12​u
Multiply fractions: a⋅cb​=ca⋅b​=−u12u​
Cancel the common factor: u=−12
12u2−12=10u
12u2−12=10u
12u2−12=10u
Solve 12u2−12=10u:u=23​,u=−32​
12u2−12=10u
Move 10uto the left side
12u2−12=10u
Subtract 10u from both sides12u2−12−10u=10u−10u
Simplify12u2−12−10u=0
12u2−12−10u=0
Write in the standard form ax2+bx+c=012u2−10u−12=0
Solve with the quadratic formula
12u2−10u−12=0
Quadratic Equation Formula:
For a=12,b=−10,c=−12u1,2​=2⋅12−(−10)±(−10)2−4⋅12(−12)​​
u1,2​=2⋅12−(−10)±(−10)2−4⋅12(−12)​​
(−10)2−4⋅12(−12)​=26
(−10)2−4⋅12(−12)​
Apply rule −(−a)=a=(−10)2+4⋅12⋅12​
Apply exponent rule: (−a)n=an,if n is even(−10)2=102=102+4⋅12⋅12​
Multiply the numbers: 4⋅12⋅12=576=102+576​
102=100=100+576​
Add the numbers: 100+576=676=676​
Factor the number: 676=262=262​
Apply radical rule: 262​=26=26
u1,2​=2⋅12−(−10)±26​
Separate the solutionsu1​=2⋅12−(−10)+26​,u2​=2⋅12−(−10)−26​
u=2⋅12−(−10)+26​:23​
2⋅12−(−10)+26​
Apply rule −(−a)=a=2⋅1210+26​
Add the numbers: 10+26=36=2⋅1236​
Multiply the numbers: 2⋅12=24=2436​
Cancel the common factor: 12=23​
u=2⋅12−(−10)−26​:−32​
2⋅12−(−10)−26​
Apply rule −(−a)=a=2⋅1210−26​
Subtract the numbers: 10−26=−16=2⋅12−16​
Multiply the numbers: 2⋅12=24=24−16​
Apply the fraction rule: b−a​=−ba​=−2416​
Cancel the common factor: 8=−32​
The solutions to the quadratic equation are:u=23​,u=−32​
u=23​,u=−32​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (u−u−1)12 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=23​,u=−32​
u=23​,u=−32​
Substitute back u=ex,solve for x
Solve ex=23​:x=ln(23​)
ex=23​
Apply exponent rules
ex=23​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(23​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(23​)
x=ln(23​)
Solve ex=−32​:No Solution for x∈R
ex=−32​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(23​)
x=ln(23​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=cos(19)tan(A)= 8/15tan^2(θ)=sec^2(θ)+1cos(2B)= 21/35 ,cos(B)2cos^4(x)+3sin^2(x)-2=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sinh(x)= 5/12 ,cosh(x) ?

    The general solution for sinh(x)= 5/12 ,cosh(x) is x=ln(3/2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024