Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan(x+43)=2cos(x+43)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan(x+43∘)=2cos(x+43∘)

Solution

x=−13∘+360∘n,x=107∘+360∘n
+1
Radians
x=−18013π​+2πn,x=180107π​+2πn
Solution steps
3tan(x+43∘)=2cos(x+43∘)
Subtract 2cos(x+43∘) from both sides3tan(x+43∘)−2cos(x+43∘)=0
Simplify 3tan(x+43∘)−2cos(x+43∘):3tan(180180x+7740∘​)−2cos(180180x+7740∘​)
3tan(x+43∘)−2cos(x+43∘)
Join x+43∘:180180x+7740∘​
x+43∘
Convert element to fraction: x=180x180​=180x⋅180​+43∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180x⋅180+7740∘​
=3tan(180180x+7740∘​)−2cos(x+43∘)
Join x+43∘:180180x+7740∘​
x+43∘
Convert element to fraction: x=180x180​=180x⋅180​+43∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180x⋅180+7740∘​
=3tan(180180x+7740∘​)−2cos(180180x+7740∘​)
3tan(180180x+7740∘​)−2cos(180180x+7740∘​)=0
Express with sin, cos3⋅cos(180180x+7740∘​)sin(180180x+7740∘​)​−2cos(180180x+7740∘​)=0
Simplify 3⋅cos(180180x+7740∘​)sin(180180x+7740∘​)​−2cos(180180x+7740∘​):cos(180180x+7740∘​)3sin(180180x+7740∘​)−2cos2(180180x+7740∘​)​
3⋅cos(180180x+7740∘​)sin(180180x+7740∘​)​−2cos(180180x+7740∘​)
Multiply 3⋅cos(180180x+7740∘​)sin(180180x+7740∘​)​:cos(180180x+7740∘​)3sin(180180x+7740∘​)​
3⋅cos(180180x+7740∘​)sin(180180x+7740∘​)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(180180x+7740∘​)sin(180180x+7740∘​)⋅3​
=cos(180180x+7740∘​)3sin(180180x+7740∘​)​−2cos(180180x+7740∘​)
Convert element to fraction: 2cos(180180x+7740∘​)=cos(180180x+7740∘​)2cos(180180x+7740∘​)cos(180180x+7740∘​)​=cos(180180x+7740∘​)sin(180180x+7740∘​)⋅3​−cos(180180x+7740∘​)2cos(180180x+7740∘​)cos(180180x+7740∘​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(180180x+7740∘​)sin(180180x+7740∘​)⋅3−2cos(180180x+7740∘​)cos(180180x+7740∘​)​
sin(180180x+7740∘​)⋅3−2cos(180180x+7740∘​)cos(180180x+7740∘​)=3sin(180180x+7740∘​)−2cos2(180180x+7740∘​)
sin(180180x+7740∘​)⋅3−2cos(180180x+7740∘​)cos(180180x+7740∘​)
2cos(180180x+7740∘​)cos(180180x+7740∘​)=2cos2(180180x+7740∘​)
2cos(180180x+7740∘​)cos(180180x+7740∘​)
Apply exponent rule: ab⋅ac=ab+ccos(180180x+7740∘​)cos(180180x+7740∘​)=cos1+1(180180x+7740∘​)=2cos1+1(180180x+7740∘​)
Add the numbers: 1+1=2=2cos2(180180x+7740∘​)
=3sin(180180x+7740∘​)−2cos2(180180x+7740∘​)
=cos(180180x+7740∘​)3sin(180180x+7740∘​)−2cos2(180180x+7740∘​)​
cos(180180x+7740∘​)3sin(180180x+7740∘​)−2cos2(180180x+7740∘​)​=0
g(x)f(x)​=0⇒f(x)=03sin(180180x+7740∘​)−2cos2(180180x+7740∘​)=0
Add 2cos2(180180x+7740∘​) to both sides3sin(180180x+7740∘​)=2cos2(180180x+7740∘​)
Square both sides(3sin(180180x+7740∘​))2=(2cos2(180180x+7740∘​))2
Subtract (2cos2(180180x+7740∘​))2 from both sides9sin2(180180x+7740∘​)−4cos4(180180x+7740∘​)=0
Factor 9sin2(180180x+7740∘​)−4cos4(180180x+7740∘​):(3sin(180180x+7740∘​)+2cos2(180180x+7740∘​))(3sin(180180x+7740∘​)−2cos2(180180x+7740∘​))
9sin2(180180x+7740∘​)−4cos4(180180x+7740∘​)
Rewrite 9sin2(180180x+7740∘​)−4cos4(180180x+7740∘​) as (3sin(180180x+7740∘​))2−(2cos2(180180x+7740∘​))2
9sin2(180180x+7740∘​)−4cos4(180180x+7740∘​)
Rewrite 9 as 32=32sin2(180180x+7740∘​)−4cos4(180180x+7740∘​)
Rewrite 4 as 22=32sin2(180180x+7740∘​)−22cos4(180180x+7740∘​)
Apply exponent rule: abc=(ab)ccos4(180180x+7740∘​)=(cos2(180180x+7740∘​))2=32sin2(180180x+7740∘​)−22(cos2(180180x+7740∘​))2
Apply exponent rule: ambm=(ab)m32sin2(180180x+7740∘​)=(3sin(180180x+7740∘​))2=(3sin(180180x+7740∘​))2−22(cos2(180180x+7740∘​))2
Apply exponent rule: ambm=(ab)m22(cos2(180180x+7740∘​))2=(2cos2(180180x+7740∘​))2=(3sin(180180x+7740∘​))2−(2cos2(180180x+7740∘​))2
=(3sin(180180x+7740∘​))2−(2cos2(180180x+7740∘​))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3sin(180180x+7740∘​))2−(2cos2(180180x+7740∘​))2=(3sin(180180x+7740∘​)+2cos2(180180x+7740∘​))(3sin(180180x+7740∘​)−2cos2(180180x+7740∘​))=(3sin(180180x+7740∘​)+2cos2(180180x+7740∘​))(3sin(180180x+7740∘​)−2cos2(180180x+7740∘​))
(3sin(180180x+7740∘​)+2cos2(180180x+7740∘​))(3sin(180180x+7740∘​)−2cos2(180180x+7740∘​))=0
Solving each part separately3sin(180180x+7740∘​)+2cos2(180180x+7740∘​)=0or3sin(180180x+7740∘​)−2cos2(180180x+7740∘​)=0
3sin(180180x+7740∘​)+2cos2(180180x+7740∘​)=0:x=167∘+360∘n,x=287∘+360∘n
3sin(180180x+7740∘​)+2cos2(180180x+7740∘​)=0
Rewrite using trig identities
2cos2(180180x+7740∘​)+3sin(180180x+7740∘​)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=2(1−sin2(180180x+7740∘​))+3sin(180180x+7740∘​)
(1−sin2(180180x+7740∘​))⋅2+3sin(180180x+7740∘​)=0
Solve by substitution
(1−sin2(180180x+7740∘​))⋅2+3sin(180180x+7740∘​)=0
Let: sin(180180x+7740∘​)=u(1−u2)⋅2+3u=0
(1−u2)⋅2+3u=0:u=−21​,u=2
(1−u2)⋅2+3u=0
Expand (1−u2)⋅2+3u:2−2u2+3u
(1−u2)⋅2+3u
=2(1−u2)+3u
Expand 2(1−u2):2−2u2
2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=u2=2⋅1−2u2
Multiply the numbers: 2⋅1=2=2−2u2
=2−2u2+3u
2−2u2+3u=0
Write in the standard form ax2+bx+c=0−2u2+3u+2=0
Solve with the quadratic formula
−2u2+3u+2=0
Quadratic Equation Formula:
For a=−2,b=3,c=2u1,2​=2(−2)−3±32−4(−2)⋅2​​
u1,2​=2(−2)−3±32−4(−2)⋅2​​
32−4(−2)⋅2​=5
32−4(−2)⋅2​
Apply rule −(−a)=a=32+4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
u1,2​=2(−2)−3±5​
Separate the solutionsu1​=2(−2)−3+5​,u2​=2(−2)−3−5​
u=2(−2)−3+5​:−21​
2(−2)−3+5​
Remove parentheses: (−a)=−a=−2⋅2−3+5​
Add/Subtract the numbers: −3+5=2=−2⋅22​
Multiply the numbers: 2⋅2=4=−42​
Apply the fraction rule: −ba​=−ba​=−42​
Cancel the common factor: 2=−21​
u=2(−2)−3−5​:2
2(−2)−3−5​
Remove parentheses: (−a)=−a=−2⋅2−3−5​
Subtract the numbers: −3−5=−8=−2⋅2−8​
Multiply the numbers: 2⋅2=4=−4−8​
Apply the fraction rule: −b−a​=ba​=48​
Divide the numbers: 48​=2=2
The solutions to the quadratic equation are:u=−21​,u=2
Substitute back u=sin(180180x+7740∘​)sin(180180x+7740∘​)=−21​,sin(180180x+7740∘​)=2
sin(180180x+7740∘​)=−21​,sin(180180x+7740∘​)=2
sin(180180x+7740∘​)=−21​:x=167∘+360∘n,x=287∘+360∘n
sin(180180x+7740∘​)=−21​
General solutions for sin(180180x+7740∘​)=−21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
180180x+7740∘​=210∘+360∘n,180180x+7740∘​=330∘+360∘n
180180x+7740∘​=210∘+360∘n,180180x+7740∘​=330∘+360∘n
Solve 180180x+7740∘​=210∘+360∘n:x=167∘+360∘n
180180x+7740∘​=210∘+360∘n
Multiply both sides by 180
180180x+7740∘​=210∘+360∘n
Multiply both sides by 180180180(180x+7740∘)​=180⋅210∘+180⋅360∘n
Simplify
180180(180x+7740∘)​=180⋅210∘+180⋅360∘n
Simplify 180180(180x+7740∘)​:180x+7740∘
180180(180x+7740∘)​
Divide the numbers: 180180​=1=180x+7740∘
Simplify 180⋅210∘+180⋅360∘n:37800∘+64800∘n
180⋅210∘+180⋅360∘n
180⋅210∘=37800∘
180⋅210∘
Multiply fractions: a⋅cb​=ca⋅b​=37800∘
Multiply the numbers: 7⋅180=1260=37800∘
Divide the numbers: 61260​=210=37800∘
180⋅360∘n=64800∘n
180⋅360∘n
Multiply the numbers: 180⋅2=360=64800∘n
=37800∘+64800∘n
180x+7740∘=37800∘+64800∘n
180x+7740∘=37800∘+64800∘n
180x+7740∘=37800∘+64800∘n
Move 7740∘to the right side
180x+7740∘=37800∘+64800∘n
Subtract 7740∘ from both sides180x+7740∘−7740∘=37800∘+64800∘n−7740∘
Simplify180x=30060∘+64800∘n
180x=30060∘+64800∘n
Divide both sides by 180
180x=30060∘+64800∘n
Divide both sides by 180180180x​=167∘+18064800∘n​
Simplifyx=167∘+360∘n
x=167∘+360∘n
Solve 180180x+7740∘​=330∘+360∘n:x=287∘+360∘n
180180x+7740∘​=330∘+360∘n
Multiply both sides by 180
180180x+7740∘​=330∘+360∘n
Multiply both sides by 180180180(180x+7740∘)​=180⋅330∘+180⋅360∘n
Simplify
180180(180x+7740∘)​=180⋅330∘+180⋅360∘n
Simplify 180180(180x+7740∘)​:180x+7740∘
180180(180x+7740∘)​
Divide the numbers: 180180​=1=180x+7740∘
Simplify 180⋅330∘+180⋅360∘n:59400∘+64800∘n
180⋅330∘+180⋅360∘n
180⋅330∘=59400∘
180⋅330∘
Multiply fractions: a⋅cb​=ca⋅b​=59400∘
Multiply the numbers: 11⋅180=1980=59400∘
Divide the numbers: 61980​=330=59400∘
180⋅360∘n=64800∘n
180⋅360∘n
Multiply the numbers: 180⋅2=360=64800∘n
=59400∘+64800∘n
180x+7740∘=59400∘+64800∘n
180x+7740∘=59400∘+64800∘n
180x+7740∘=59400∘+64800∘n
Move 7740∘to the right side
180x+7740∘=59400∘+64800∘n
Subtract 7740∘ from both sides180x+7740∘−7740∘=59400∘+64800∘n−7740∘
Simplify180x=51660∘+64800∘n
180x=51660∘+64800∘n
Divide both sides by 180
180x=51660∘+64800∘n
Divide both sides by 180180180x​=287∘+18064800∘n​
Simplifyx=287∘+360∘n
x=287∘+360∘n
x=167∘+360∘n,x=287∘+360∘n
sin(180180x+7740∘​)=2:No Solution
sin(180180x+7740∘​)=2
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=167∘+360∘n,x=287∘+360∘n
3sin(180180x+7740∘​)−2cos2(180180x+7740∘​)=0:x=−13∘+360∘n,x=107∘+360∘n
3sin(180180x+7740∘​)−2cos2(180180x+7740∘​)=0
Rewrite using trig identities
−2cos2(180180x+7740∘​)+3sin(180180x+7740∘​)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−2(1−sin2(180180x+7740∘​))+3sin(180180x+7740∘​)
−(1−sin2(180180x+7740∘​))⋅2+3sin(180180x+7740∘​)=0
Solve by substitution
−(1−sin2(180180x+7740∘​))⋅2+3sin(180180x+7740∘​)=0
Let: sin(180180x+7740∘​)=u−(1−u2)⋅2+3u=0
−(1−u2)⋅2+3u=0:u=21​,u=−2
−(1−u2)⋅2+3u=0
Expand −(1−u2)⋅2+3u:−2+2u2+3u
−(1−u2)⋅2+3u
=−2(1−u2)+3u
Expand −2(1−u2):−2+2u2
−2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=u2=−2⋅1−(−2)u2
Apply minus-plus rules−(−a)=a=−2⋅1+2u2
Multiply the numbers: 2⋅1=2=−2+2u2
=−2+2u2+3u
−2+2u2+3u=0
Write in the standard form ax2+bx+c=02u2+3u−2=0
Solve with the quadratic formula
2u2+3u−2=0
Quadratic Equation Formula:
For a=2,b=3,c=−2u1,2​=2⋅2−3±32−4⋅2(−2)​​
u1,2​=2⋅2−3±32−4⋅2(−2)​​
32−4⋅2(−2)​=5
32−4⋅2(−2)​
Apply rule −(−a)=a=32+4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
u1,2​=2⋅2−3±5​
Separate the solutionsu1​=2⋅2−3+5​,u2​=2⋅2−3−5​
u=2⋅2−3+5​:21​
2⋅2−3+5​
Add/Subtract the numbers: −3+5=2=2⋅22​
Multiply the numbers: 2⋅2=4=42​
Cancel the common factor: 2=21​
u=2⋅2−3−5​:−2
2⋅2−3−5​
Subtract the numbers: −3−5=−8=2⋅2−8​
Multiply the numbers: 2⋅2=4=4−8​
Apply the fraction rule: b−a​=−ba​=−48​
Divide the numbers: 48​=2=−2
The solutions to the quadratic equation are:u=21​,u=−2
Substitute back u=sin(180180x+7740∘​)sin(180180x+7740∘​)=21​,sin(180180x+7740∘​)=−2
sin(180180x+7740∘​)=21​,sin(180180x+7740∘​)=−2
sin(180180x+7740∘​)=21​:x=−13∘+360∘n,x=107∘+360∘n
sin(180180x+7740∘​)=21​
General solutions for sin(180180x+7740∘​)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
180180x+7740∘​=30∘+360∘n,180180x+7740∘​=150∘+360∘n
180180x+7740∘​=30∘+360∘n,180180x+7740∘​=150∘+360∘n
Solve 180180x+7740∘​=30∘+360∘n:x=−13∘+360∘n
180180x+7740∘​=30∘+360∘n
Multiply both sides by 180
180180x+7740∘​=30∘+360∘n
Multiply both sides by 180180180(180x+7740∘)​=180⋅30∘+180⋅360∘n
Simplify
180180(180x+7740∘)​=180⋅30∘+180⋅360∘n
Simplify 180180(180x+7740∘)​:180x+7740∘
180180(180x+7740∘)​
Divide the numbers: 180180​=1=180x+7740∘
Simplify 180⋅30∘+180⋅360∘n:5400∘+64800∘n
180⋅30∘+180⋅360∘n
180⋅30∘=5400∘
180⋅30∘
Multiply fractions: a⋅cb​=ca⋅b​=5400∘
Divide the numbers: 6180​=30=5400∘
180⋅360∘n=64800∘n
180⋅360∘n
Multiply the numbers: 180⋅2=360=64800∘n
=5400∘+64800∘n
180x+7740∘=5400∘+64800∘n
180x+7740∘=5400∘+64800∘n
180x+7740∘=5400∘+64800∘n
Move 7740∘to the right side
180x+7740∘=5400∘+64800∘n
Subtract 7740∘ from both sides180x+7740∘−7740∘=5400∘+64800∘n−7740∘
Simplify180x=−2340∘+64800∘n
180x=−2340∘+64800∘n
Divide both sides by 180
180x=−2340∘+64800∘n
Divide both sides by 180180180x​=−13∘+18064800∘n​
Simplifyx=−13∘+360∘n
x=−13∘+360∘n
Solve 180180x+7740∘​=150∘+360∘n:x=107∘+360∘n
180180x+7740∘​=150∘+360∘n
Multiply both sides by 180
180180x+7740∘​=150∘+360∘n
Multiply both sides by 180180180(180x+7740∘)​=180⋅150∘+180⋅360∘n
Simplify
180180(180x+7740∘)​=180⋅150∘+180⋅360∘n
Simplify 180180(180x+7740∘)​:180x+7740∘
180180(180x+7740∘)​
Divide the numbers: 180180​=1=180x+7740∘
Simplify 180⋅150∘+180⋅360∘n:27000∘+64800∘n
180⋅150∘+180⋅360∘n
180⋅150∘=27000∘
180⋅150∘
Multiply fractions: a⋅cb​=ca⋅b​=27000∘
Multiply the numbers: 5⋅180=900=27000∘
Divide the numbers: 6900​=150=27000∘
180⋅360∘n=64800∘n
180⋅360∘n
Multiply the numbers: 180⋅2=360=64800∘n
=27000∘+64800∘n
180x+7740∘=27000∘+64800∘n
180x+7740∘=27000∘+64800∘n
180x+7740∘=27000∘+64800∘n
Move 7740∘to the right side
180x+7740∘=27000∘+64800∘n
Subtract 7740∘ from both sides180x+7740∘−7740∘=27000∘+64800∘n−7740∘
Simplify180x=19260∘+64800∘n
180x=19260∘+64800∘n
Divide both sides by 180
180x=19260∘+64800∘n
Divide both sides by 180180180x​=107∘+18064800∘n​
Simplifyx=107∘+360∘n
x=107∘+360∘n
x=−13∘+360∘n,x=107∘+360∘n
sin(180180x+7740∘​)=−2:No Solution
sin(180180x+7740∘​)=−2
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=−13∘+360∘n,x=107∘+360∘n
Combine all the solutionsx=167∘+360∘n,x=287∘+360∘n,x=−13∘+360∘n,x=107∘+360∘n
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 3tan(x+43∘)=2cos(x+43∘)
Remove the ones that don't agree with the equation.
Check the solution 167∘+360∘n:False
167∘+360∘n
Plug in n=1167∘+360∘1
For 3tan(x+43∘)=2cos(x+43∘)plug inx=167∘+360∘13tan(167∘+360∘1+43∘)=2cos(167∘+360∘1+43∘)
Refine1.73205…=−1.73205…
⇒False
Check the solution 287∘+360∘n:False
287∘+360∘n
Plug in n=1287∘+360∘1
For 3tan(x+43∘)=2cos(x+43∘)plug inx=287∘+360∘13tan(287∘+360∘1+43∘)=2cos(287∘+360∘1+43∘)
Refine−1.73205…=1.73205…
⇒False
Check the solution −13∘+360∘n:True
−13∘+360∘n
Plug in n=1−13∘+360∘1
For 3tan(x+43∘)=2cos(x+43∘)plug inx=−13∘+360∘13tan(−13∘+360∘1+43∘)=2cos(−13∘+360∘1+43∘)
Refine1.73205…=1.73205…
⇒True
Check the solution 107∘+360∘n:True
107∘+360∘n
Plug in n=1107∘+360∘1
For 3tan(x+43∘)=2cos(x+43∘)plug inx=107∘+360∘13tan(107∘+360∘1+43∘)=2cos(107∘+360∘1+43∘)
Refine−1.73205…=−1.73205…
⇒True
x=−13∘+360∘n,x=107∘+360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin(x)=sqrt(3)sec(x)(sin(55.01-x))/(sin(x))= 1200/500csc(θ)=0.77(sin(x)+cos(x))/(sin(x))=1 1/(tan(x))arctan(x)=(-pi)/2

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tan(x+43)=2cos(x+43) ?

    The general solution for 3tan(x+43)=2cos(x+43) is x=-13+360n,x=107+360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024