Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(β)-cot^2(β)=cos^2(β)cot^2(β)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(β)−cot2(β)=cos2(β)cot2(β)

Solution

β=2π​+πn
+1
Degrees
β=90∘+180∘n
Solution steps
cos2(β)−cot2(β)=cos2(β)cot2(β)
Subtract cos2(β)cot2(β) from both sidescos2(β)−cot2(β)−cos2(β)cot2(β)=0
Express with sin, cos
cos2(β)−cot2(β)−cos2(β)cot2(β)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=cos2(β)−(sin(β)cos(β)​)2−cos2(β)(sin(β)cos(β)​)2
Simplify cos2(β)−(sin(β)cos(β)​)2−cos2(β)(sin(β)cos(β)​)2:sin2(β)cos2(β)sin2(β)−cos2(β)−cos4(β)​
cos2(β)−(sin(β)cos(β)​)2−cos2(β)(sin(β)cos(β)​)2
(sin(β)cos(β)​)2=sin2(β)cos2(β)​
(sin(β)cos(β)​)2
Apply exponent rule: (ba​)c=bcac​=sin2(β)cos2(β)​
cos2(β)(sin(β)cos(β)​)2=sin2(β)cos4(β)​
cos2(β)(sin(β)cos(β)​)2
(sin(β)cos(β)​)2=sin2(β)cos2(β)​
(sin(β)cos(β)​)2
Apply exponent rule: (ba​)c=bcac​=sin2(β)cos2(β)​
=sin2(β)cos2(β)​cos2(β)
Multiply fractions: a⋅cb​=ca⋅b​=sin2(β)cos2(β)cos2(β)​
cos2(β)cos2(β)=cos4(β)
cos2(β)cos2(β)
Apply exponent rule: ab⋅ac=ab+ccos2(β)cos2(β)=cos2+2(β)=cos2+2(β)
Add the numbers: 2+2=4=cos4(β)
=sin2(β)cos4(β)​
=cos2(β)−sin2(β)cos2(β)​−sin2(β)cos4(β)​
Combine the fractions −sin2(β)cos2(β)​−sin2(β)cos4(β)​:sin2(β)−cos2(β)−cos4(β)​
Apply rule ca​±cb​=ca±b​=sin2(β)−cos2(β)−cos4(β)​
=cos2(β)+sin2(β)−cos4(β)−cos2(β)​
Convert element to fraction: cos2(β)=sin2(β)cos2(β)sin2(β)​=sin2(β)cos2(β)sin2(β)​+sin2(β)−cos2(β)−cos4(β)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(β)cos2(β)sin2(β)−cos2(β)−cos4(β)​
=sin2(β)cos2(β)sin2(β)−cos2(β)−cos4(β)​
sin2(β)−cos2(β)−cos4(β)+cos2(β)sin2(β)​=0
g(x)f(x)​=0⇒f(x)=0−cos2(β)−cos4(β)+cos2(β)sin2(β)=0
Factor −cos2(β)−cos4(β)+cos2(β)sin2(β):−cos2(β)(1+cos2(β)−sin2(β))
−cos2(β)−cos4(β)+cos2(β)sin2(β)
Apply exponent rule: ab+c=abaccos4(β)=cos2(β)cos2(β)=−cos2(β)−cos2(β)cos2(β)+sin2(β)cos2(β)
Factor out common term −cos2(β)=−cos2(β)(1+cos2(β)−sin2(β))
−cos2(β)(1+cos2(β)−sin2(β))=0
Solving each part separatelycos2(β)=0or1+cos2(β)−sin2(β)=0
cos2(β)=0:β=2π​+2πn,β=23π​+2πn
cos2(β)=0
Apply rule xn=0⇒x=0
cos(β)=0
General solutions for cos(β)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
β=2π​+2πn,β=23π​+2πn
β=2π​+2πn,β=23π​+2πn
1+cos2(β)−sin2(β)=0:β=2π​+πn
1+cos2(β)−sin2(β)=0
Rewrite using trig identities
1+cos2(β)−sin2(β)
Use the Double Angle identity: cos2(x)−sin2(x)=cos(2x)=1+cos(2β)
1+cos(2β)=0
Move 1to the right side
1+cos(2β)=0
Subtract 1 from both sides1+cos(2β)−1=0−1
Simplifycos(2β)=−1
cos(2β)=−1
General solutions for cos(2β)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2β=π+2πn
2β=π+2πn
Solve 2β=π+2πn:β=2π​+πn
2β=π+2πn
Divide both sides by 2
2β=π+2πn
Divide both sides by 222β​=2π​+22πn​
Simplifyβ=2π​+πn
β=2π​+πn
β=2π​+πn
Combine all the solutionsβ=2π​+2πn,β=23π​+2πn,β=2π​+πn
Merge Overlapping Intervalsβ=2π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^3(x)=cos(x),0<= x<2pisin(r)=0.58sec(α)= 9/5cos^2(x)+sin(x)= 5/4(8.87)/(9.8)=sin(α)-0.1sqrt(1-sin^2(α))

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^2(β)-cot^2(β)=cos^2(β)cot^2(β) ?

    The general solution for cos^2(β)-cot^2(β)=cos^2(β)cot^2(β) is β= pi/2+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024