Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2tan^2(x)+1=cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2tan2(x)+1=cos(x)

Solution

x=2πn
+1
Degrees
x=0∘+360∘n
Solution steps
2tan2(x)+1=cos(x)
Square both sides(2tan2(x)+1)2=cos2(x)
Subtract cos2(x) from both sides(2tan2(x)+1)2−cos2(x)=0
Rewrite using trig identities
(1+2tan2(x))2−cos2(x)
Use the Pythagorean identity: tan2(x)+1=sec2(x)tan2(x)=sec2(x)−1=(1+2(sec2(x)−1))2−cos2(x)
Expand 1+2(sec2(x)−1):2sec2(x)−1
1+2(sec2(x)−1)
Expand 2(sec2(x)−1):2sec2(x)−2
2(sec2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=2,b=sec2(x),c=1=2sec2(x)−2⋅1
Multiply the numbers: 2⋅1=2=2sec2(x)−2
=1+2sec2(x)−2
Simplify 1+2sec2(x)−2:2sec2(x)−1
1+2sec2(x)−2
Group like terms=2sec2(x)+1−2
Add/Subtract the numbers: 1−2=−1=2sec2(x)−1
=2sec2(x)−1
=(2sec2(x)−1)2−cos2(x)
(−1+2sec2(x))2−cos2(x)=0
Factor (−1+2sec2(x))2−cos2(x):(−1+2sec2(x)+cos(x))(−1+2sec2(x)−cos(x))
(−1+2sec2(x))2−cos2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(−1+2sec2(x))2−cos2(x)=((−1+2sec2(x))+cos(x))((−1+2sec2(x))−cos(x))=((−1+2sec2(x))+cos(x))((−1+2sec2(x))−cos(x))
Refine=(2sec2(x)+cos(x)−1)(2sec2(x)−cos(x)−1)
(−1+2sec2(x)+cos(x))(−1+2sec2(x)−cos(x))=0
Solving each part separately−1+2sec2(x)+cos(x)=0or−1+2sec2(x)−cos(x)=0
−1+2sec2(x)+cos(x)=0:x=π+2πn
−1+2sec2(x)+cos(x)=0
Rewrite using trig identities
−1+cos(x)+2sec2(x)
Use the basic trigonometric identity: cos(x)=sec(x)1​=−1+sec(x)1​+2sec2(x)
−1+sec(x)1​+2sec2(x)=0
Solve by substitution
−1+sec(x)1​+2sec2(x)=0
Let: sec(x)=u−1+u1​+2u2=0
−1+u1​+2u2=0:u=−1,u=21​+i21​,u=21​−i21​
−1+u1​+2u2=0
Multiply both sides by u
−1+u1​+2u2=0
Multiply both sides by u−1⋅u+u1​u+2u2u=0⋅u
Simplify
−1⋅u+u1​u+2u2u=0⋅u
Simplify −1⋅u:−u
−1⋅u
Multiply: 1⋅u=u=−u
Simplify u1​u:1
u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
Simplify 2u2u:2u3
2u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=2u2+1
Add the numbers: 2+1=3=2u3
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−u+1+2u3=0
−u+1+2u3=0
−u+1+2u3=0
Solve −u+1+2u3=0:u=−1,u=21​+i21​,u=21​−i21​
−u+1+2u3=0
Write in the standard form an​xn+…+a1​x+a0​=02u3−u+1=0
Factor 2u3−u+1:(u+1)(2u2−2u+1)
2u3−u+1
Use the rational root theorem
a0​=1,an​=2
The dividers of a0​:1,The dividers of an​:1,2
Therefore, check the following rational numbers:±1,21​
−11​ is a root of the expression, so factor out u+1
=(u+1)u+12u3−u+1​
u+12u3−u+1​=2u2−2u+1
u+12u3−u+1​
Divide u+12u3−u+1​:u+12u3−u+1​=2u2+u+1−2u2−u+1​
Divide the leading coefficients of the numerator 2u3−u+1
and the divisor u+1:u2u3​=2u2
Quotient=2u2
Multiply u+1 by 2u2:2u3+2u2Subtract 2u3+2u2 from 2u3−u+1 to get new remainderRemainder=−2u2−u+1
Thereforeu+12u3−u+1​=2u2+u+1−2u2−u+1​
=2u2+u+1−2u2−u+1​
Divide u+1−2u2−u+1​:u+1−2u2−u+1​=−2u+u+1u+1​
Divide the leading coefficients of the numerator −2u2−u+1
and the divisor u+1:u−2u2​=−2u
Quotient=−2u
Multiply u+1 by −2u:−2u2−2uSubtract −2u2−2u from −2u2−u+1 to get new remainderRemainder=u+1
Thereforeu+1−2u2−u+1​=−2u+u+1u+1​
=2u2−2u+u+1u+1​
Divide u+1u+1​:u+1u+1​=1
Divide the leading coefficients of the numerator u+1
and the divisor u+1:uu​=1
Quotient=1
Multiply u+1 by 1:u+1Subtract u+1 from u+1 to get new remainderRemainder=0
Thereforeu+1u+1​=1
=2u2−2u+1
=(u+1)(2u2−2u+1)
(u+1)(2u2−2u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0or2u2−2u+1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve 2u2−2u+1=0:u=21​+i21​,u=21​−i21​
2u2−2u+1=0
Solve with the quadratic formula
2u2−2u+1=0
Quadratic Equation Formula:
For a=2,b=−2,c=1u1,2​=2⋅2−(−2)±(−2)2−4⋅2⋅1​​
u1,2​=2⋅2−(−2)±(−2)2−4⋅2⋅1​​
Simplify (−2)2−4⋅2⋅1​:2i
(−2)2−4⋅2⋅1​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=22−8​
Apply imaginary number rule: −a​=ia​=i8−22​
−22+8​=2
−22+8​
22=4=−4+8​
Add/Subtract the numbers: −4+8=4=4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2i
u1,2​=2⋅2−(−2)±2i​
Separate the solutionsu1​=2⋅2−(−2)+2i​,u2​=2⋅2−(−2)−2i​
u=2⋅2−(−2)+2i​:21​+i21​
2⋅2−(−2)+2i​
Apply rule −(−a)=a=2⋅22+2i​
Multiply the numbers: 2⋅2=4=42+2i​
Factor 2+2i:2(1+i)
2+2i
Rewrite as=2⋅1+2i
Factor out common term 2=2(1+i)
=42(1+i)​
Cancel the common factor: 2=21+i​
Rewrite 21+i​ in standard complex form: 21​+21​i
21+i​
Apply the fraction rule: ca±b​=ca​±cb​21+i​=21​+2i​=21​+2i​
=21​+21​i
u=2⋅2−(−2)−2i​:21​−i21​
2⋅2−(−2)−2i​
Apply rule −(−a)=a=2⋅22−2i​
Multiply the numbers: 2⋅2=4=42−2i​
Factor 2−2i:2(1−i)
2−2i
Rewrite as=2⋅1−2i
Factor out common term 2=2(1−i)
=42(1−i)​
Cancel the common factor: 2=21−i​
Rewrite 21−i​ in standard complex form: 21​−21​i
21−i​
Apply the fraction rule: ca±b​=ca​±cb​21−i​=21​−2i​=21​−2i​
=21​−21​i
The solutions to the quadratic equation are:u=21​+i21​,u=21​−i21​
The solutions areu=−1,u=21​+i21​,u=21​−i21​
u=−1,u=21​+i21​,u=21​−i21​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −1+u1​+2u2 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−1,u=21​+i21​,u=21​−i21​
Substitute back u=sec(x)sec(x)=−1,sec(x)=21​+i21​,sec(x)=21​−i21​
sec(x)=−1,sec(x)=21​+i21​,sec(x)=21​−i21​
sec(x)=−1:x=π+2πn
sec(x)=−1
General solutions for sec(x)=−1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=π+2πn
x=π+2πn
sec(x)=21​+i21​:No Solution
sec(x)=21​+i21​
NoSolution
sec(x)=21​−i21​:No Solution
sec(x)=21​−i21​
NoSolution
Combine all the solutionsx=π+2πn
−1+2sec2(x)−cos(x)=0:x=2πn
−1+2sec2(x)−cos(x)=0
Rewrite using trig identities
−1−cos(x)+2sec2(x)
Use the basic trigonometric identity: cos(x)=sec(x)1​=−1−sec(x)1​+2sec2(x)
−1−sec(x)1​+2sec2(x)=0
Solve by substitution
−1−sec(x)1​+2sec2(x)=0
Let: sec(x)=u−1−u1​+2u2=0
−1−u1​+2u2=0:u=1,u=−21​+i21​,u=−21​−i21​
−1−u1​+2u2=0
Multiply both sides by u
−1−u1​+2u2=0
Multiply both sides by u−1⋅u−u1​u+2u2u=0⋅u
Simplify
−1⋅u−u1​u+2u2u=0⋅u
Simplify −1⋅u:−u
−1⋅u
Multiply: 1⋅u=u=−u
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
Simplify 2u2u:2u3
2u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=2u2+1
Add the numbers: 2+1=3=2u3
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−u−1+2u3=0
−u−1+2u3=0
−u−1+2u3=0
Solve −u−1+2u3=0:u=1,u=−21​+i21​,u=−21​−i21​
−u−1+2u3=0
Write in the standard form an​xn+…+a1​x+a0​=02u3−u−1=0
Factor 2u3−u−1:(u−1)(2u2+2u+1)
2u3−u−1
Use the rational root theorem
a0​=1,an​=2
The dividers of a0​:1,The dividers of an​:1,2
Therefore, check the following rational numbers:±1,21​
11​ is a root of the expression, so factor out u−1
=(u−1)u−12u3−u−1​
u−12u3−u−1​=2u2+2u+1
u−12u3−u−1​
Divide u−12u3−u−1​:u−12u3−u−1​=2u2+u−12u2−u−1​
Divide the leading coefficients of the numerator 2u3−u−1
and the divisor u−1:u2u3​=2u2
Quotient=2u2
Multiply u−1 by 2u2:2u3−2u2Subtract 2u3−2u2 from 2u3−u−1 to get new remainderRemainder=2u2−u−1
Thereforeu−12u3−u−1​=2u2+u−12u2−u−1​
=2u2+u−12u2−u−1​
Divide u−12u2−u−1​:u−12u2−u−1​=2u+u−1u−1​
Divide the leading coefficients of the numerator 2u2−u−1
and the divisor u−1:u2u2​=2u
Quotient=2u
Multiply u−1 by 2u:2u2−2uSubtract 2u2−2u from 2u2−u−1 to get new remainderRemainder=u−1
Thereforeu−12u2−u−1​=2u+u−1u−1​
=2u2+2u+u−1u−1​
Divide u−1u−1​:u−1u−1​=1
Divide the leading coefficients of the numerator u−1
and the divisor u−1:uu​=1
Quotient=1
Multiply u−1 by 1:u−1Subtract u−1 from u−1 to get new remainderRemainder=0
Thereforeu−1u−1​=1
=2u2+2u+1
=(u−1)(2u2+2u+1)
(u−1)(2u2+2u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0or2u2+2u+1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve 2u2+2u+1=0:u=−21​+i21​,u=−21​−i21​
2u2+2u+1=0
Solve with the quadratic formula
2u2+2u+1=0
Quadratic Equation Formula:
For a=2,b=2,c=1u1,2​=2⋅2−2±22−4⋅2⋅1​​
u1,2​=2⋅2−2±22−4⋅2⋅1​​
Simplify 22−4⋅2⋅1​:2i
22−4⋅2⋅1​
Multiply the numbers: 4⋅2⋅1=8=22−8​
Apply imaginary number rule: −a​=ia​=i8−22​
−22+8​=2
−22+8​
22=4=−4+8​
Add/Subtract the numbers: −4+8=4=4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2i
u1,2​=2⋅2−2±2i​
Separate the solutionsu1​=2⋅2−2+2i​,u2​=2⋅2−2−2i​
u=2⋅2−2+2i​:−21​+i21​
2⋅2−2+2i​
Multiply the numbers: 2⋅2=4=4−2+2i​
Factor −2+2i:2(−1+i)
−2+2i
Rewrite as=−2⋅1+2i
Factor out common term 2=2(−1+i)
=42(−1+i)​
Cancel the common factor: 2=2−1+i​
Rewrite 2−1+i​ in standard complex form: −21​+21​i
2−1+i​
Apply the fraction rule: ca±b​=ca​±cb​2−1+i​=−21​+2i​=−21​+2i​
=−21​+21​i
u=2⋅2−2−2i​:−21​−i21​
2⋅2−2−2i​
Multiply the numbers: 2⋅2=4=4−2−2i​
Factor −2−2i:−2(1+i)
−2−2i
Rewrite as=−2⋅1−2i
Factor out common term 2=−2(1+i)
=−42(1+i)​
Cancel the common factor: 2=−21+i​
Rewrite −21+i​ in standard complex form: −21​−21​i
−21+i​
Apply the fraction rule: ca±b​=ca​±cb​21+i​=−(21​)−(2i​)=−(21​)−(2i​)
Remove parentheses: (a)=a=−21​−2i​
=−21​−21​i
The solutions to the quadratic equation are:u=−21​+i21​,u=−21​−i21​
The solutions areu=1,u=−21​+i21​,u=−21​−i21​
u=1,u=−21​+i21​,u=−21​−i21​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −1−u1​+2u2 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−21​+i21​,u=−21​−i21​
Substitute back u=sec(x)sec(x)=1,sec(x)=−21​+i21​,sec(x)=−21​−i21​
sec(x)=1,sec(x)=−21​+i21​,sec(x)=−21​−i21​
sec(x)=1:x=2πn
sec(x)=1
General solutions for sec(x)=1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
sec(x)=−21​+i21​:No Solution
sec(x)=−21​+i21​
NoSolution
sec(x)=−21​−i21​:No Solution
sec(x)=−21​−i21​
NoSolution
Combine all the solutionsx=2πn
Combine all the solutionsx=π+2πn,x=2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 2tan2(x)+1=cos(x)
Remove the ones that don't agree with the equation.
Check the solution π+2πn:False
π+2πn
Plug in n=1π+2π1
For 2tan2(x)+1=cos(x)plug inx=π+2π12tan2(π+2π1)+1=cos(π+2π1)
Refine1=−1
⇒False
Check the solution 2πn:True
2πn
Plug in n=12π1
For 2tan2(x)+1=cos(x)plug inx=2π12tan2(2π1)+1=cos(2π1)
Refine1=1
⇒True
x=2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec(x)=-4/3sin(B)= 1/455sin(θ)-20-20cos(θ)=08sin^2(x)=15sin(x)cos(x)=cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2tan^2(x)+1=cos(x) ?

    The general solution for 2tan^2(x)+1=cos(x) is x=2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024